Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain

Abstract

Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Merlin JS, Long D, Becker WC, Cachay ER, Christopoulos KA, Claborn K, et al. Brief report: the association of chronic pain and long-term opioid therapy with hiv treatment outcomes. J Acquir Immune Defic Syndr. 2018;79:77–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Merlin JS, Cen L, Praestgaard A, Turner M, Obando A, Alpert C, et al. Pain and physical and psychological symptoms in ambulatory HIV patients in the current treatment era. J Pain Symptom Manag. 2012;43:638–45.

    Google Scholar 

  3. Merlin JS, Westfall AO, Raper JL, Zinski A, Norton WE, Willig JH, et al. Pain, mood, and substance abuse in HIV: implications for clinic visit utilization, antiretroviral therapy adherence, and virologic failure. J Acquired Immune Defic Syndr. 2012;61:164–70.

    CAS  Google Scholar 

  4. Miaskowski C, Penko JM, Guzman D, Mattson JE, Bangsberg DR, Kushel MB. Occurrence and characteristics of chronic pain in a community-based cohort of indigent adults living with HIV infection. J Pain. 2011;12:1004–16.

    PubMed  PubMed Central  Google Scholar 

  5. Lee KA, Gay C, Portillo CJ, Coggins T, Davis H, Pullinger CR, et al. Symptom experience in HIV-infected adults: a function of demographic and clinical characteristics. J Pain Symptom Manag. 2009;38:882–93.

    Google Scholar 

  6. O’Neill WM, Sherrard JS. Pain in human immunodeficiency virus disease: a review. Pain. 1993;54:3–14.

    PubMed  Google Scholar 

  7. Antiretroviral Therapy Cohort C. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372:293–9.

    Google Scholar 

  8. Harding R, Molloy T, Easterbrook P, Frame K, Higginson IJ. Is antiretroviral therapy associated with symptom prevalence and burden? Int J STD AIDS. 2006;17:400–5.

    PubMed  Google Scholar 

  9. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T, et al. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study. Arch Neurol. 2010;67:552–8.

    PubMed  PubMed Central  Google Scholar 

  10. Cervia LD, McGowan JP, Weseley AJ. Clinical and demographic variables related to pain in HIV-infected individuals treated with effective, combination antiretroviral therapy (cART). Pain Med. 2010;11:498–503.

    PubMed  Google Scholar 

  11. Larue F, Fontaine A, Colleau SM. Underestimation and undertreatment of pain in HIV disease: multicentre study. Bmj. 1997;314:23–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Frich LM, Borgbjerg FM. Pain and pain treatment in AIDS patients: a longitudinal study. J Pain Symptom Manag. 2000;19:339–47.

    CAS  Google Scholar 

  13. Coughlan M. Pain and palliative care for people living with HIV/AIDS in Asia. J Pain Palliat Care Pharmacother. 2003;17:91–104.

    PubMed  Google Scholar 

  14. Onen NF, Barrette EP, Shacham E, Taniguchi T, Donovan M, Overton ET. A review of opioid prescribing practices and associations with repeat opioid prescriptions in a contemporary outpatient HIV clinic. Pain Pract. 2012;12:440–8.

    PubMed  Google Scholar 

  15. Perry BA, Westfall AO, Molony E, Tucker R, Ritchie C, Saag MS, et al. Characteristics of an ambulatory palliative care clinic for HIV-infected patients. J Palliat Med. 2013;16:934–7.

    PubMed  PubMed Central  Google Scholar 

  16. Mirsattari SM, Power C, Nath A. Primary headaches in HIV-infected patients. Headache. 1999;39:3–10.

    PubMed  CAS  Google Scholar 

  17. Jiao JM, So E, Jebakumar J, George MC, Simpson DM, Robinson-Papp J. Chronic pain disorders in HIV primary care: clinical characteristics and association with healthcare utilization. Pain. 2016;157:931–7.

    PubMed  Google Scholar 

  18. Merlin JS, Westfall AO, Heath SL, Goodin BR, Stewart JC, Sorge RE, et al. Brief report: IL-1beta levels are associated with chronic multisite pain in people living with HIV. J Acquired Immune Defic Syndr. 2017;75:e99–e103.

    CAS  Google Scholar 

  19. Sabin CA, Harding R, Bagkeris E, Geressu A, Nkhoma K, Post FA, et al. The predictors of pain extent in people living with HIV. Aids. 2020;34:2071–9.

    PubMed  Google Scholar 

  20. Parker R, Stein DJ, Jelsma J. Pain in people living with HIV/AIDS: a systematic review. J Int AIDS Soc. 2014;17:18719.

    PubMed  PubMed Central  Google Scholar 

  21. Oshinaike O, Akinbami A, Ojo O, Ogbera A, Okubadejo N, Ojini F, et al. Influence of age and neurotoxic HAART use on frequency of HIV sensory neuropathy. AIDS Res. Treat. 2012;2012:961510.

    PubMed  PubMed Central  Google Scholar 

  22. Octaviana F, Safri AY, Setiawan DD, Estiasari R, Imran D, Ranakusuma T, et al. Neuropathic pain in HIV patients receiving ART without stavudine in an Indonesia Referral Hospital. J Neurol Sci. 2019;397:146–9.

    PubMed  CAS  Google Scholar 

  23. Zheng Q, Xie W, Luckemeyer DD, Lay M, Wang XW, Dong X, et al. Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain. Neuron. 2022;110:209–220.e206.

    PubMed  CAS  Google Scholar 

  24. Yuan SB, Shi Y, Chen J, Zhou X, Li G, Gelman BB, et al. Gp120 in the pathogenesis of human immunodeficiency virus-associated pain. Ann Neurol. 2014;75:837–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Herzberg U, Sagen J. Peripheral nerve exposure to HIV viral envelope protein gp120 induces neuropathic pain and spinal gliosis. J Neuroimmunol. 2001;116:29–39.

    PubMed  CAS  Google Scholar 

  26. Keswani SC, Jack C, Zhou C, Hoke A. Establishment of a rodent model of HIV-associated sensory neuropathy. J Neurosci. 2006;26:10299–304.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11:823–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Peirs C, Seal RP. Neural circuits for pain: recent advances and current views. Science. 2016;354:578–84.

    PubMed  CAS  Google Scholar 

  29. Ru W, Liu X, Bae C, Shi Y, Walikonis R, Mo Chung J, et al. Microglia Mediate HIV-1 gp120-Induced synaptic degeneration in spinal pain neural circuits. J Neurosci. 2019;39:8408–21.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem. 2000;74:2373–9.

    PubMed  CAS  Google Scholar 

  31. Liu X, Bae C, Gelman BB, Chung JM, Tang SJ. A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain. 2022;145:4108–23.

    PubMed  PubMed Central  Google Scholar 

  32. Shi Y, Gelman BB, Lisinicchia JG, Tang SJ. Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients. J Neurosci. 2012;32:10833–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Ji R-R, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129:343–66.

    PubMed  Google Scholar 

  34. Ji RR, Donnelly CR, Nedergaard M. Astrocytes in chronic pain and itch. Nat Rev Neurosci. 2019;20:667–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Tang SJ. Reactive astrocytes in pain neural circuit pathogenesis. Curr Opin Neurobiol. 2022;75:102584.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, et al. Central nervous system targets: glial cell mechanisms in chronic pain. Neurotherapeutics. 2020;17:846–60.

    PubMed  PubMed Central  Google Scholar 

  37. Shi Y, Shu J, Liang Z, Yuan S, Tang SJ. EXPRESS: oligodendrocytes in HIV-associated pain pathogenesis. Mol pain. 2016;12:1744806916656845.

    PubMed  PubMed Central  Google Scholar 

  38. Polito A, Reynolds R. NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat. 2005;207:707–16.

    PubMed  PubMed Central  Google Scholar 

  39. Zhang SZ, Wang QQ, Yang QQ, Gu HY, Yin YQ, Li YD, et al. NG2 glia regulate brain innate immunity via TGF-beta2/TGFBR2 axis. BMC Med. 2019;17:204.

    PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Aguzzi A. NG2 glia are required for maintaining microglia homeostatic state. Glia. 2020;68:345–55.

    PubMed  Google Scholar 

  41. Keltner JR, Connolly CG, Vaida F, Jenkinson M, Fennema-Notestine C, Archibald S, et al. HIV distal neuropathic pain is associated with smaller ventral posterior cingulate cortex. Pain Med. 2017;18:428–40.

    PubMed  Google Scholar 

  42. Castillo D, Ernst T, Cunningham E, Chang L. Altered associations between pain symptoms and brain morphometry in the pain matrix of HIV-seropositive individuals. J Neuroimmune Pharmacol. 2018;13:77–89.

    PubMed  Google Scholar 

  43. Madden VJ, Parker R, Goodin BR. Chronic pain in people with HIV: a common comorbidity and threat to quality of life. Pain Manag. 2020;10:253–60.

    PubMed  PubMed Central  Google Scholar 

  44. Goodin BR, Owens MA, Yessick LR, Rainey RL, Okunbor JI, White DM, et al. Detectable viral load may be associated with increased pain sensitivity in persons living with HIV: preliminary findings. Pain Med. 2017;18:2289–95.

    PubMed  PubMed Central  Google Scholar 

  45. Richardson JL, Heikes B, Karim R, Weber K, Anastos K, Young M. Experience of pain among women with advanced HIV disease. AIDS Patient Care STDs. 2009;23:503–11.

    PubMed  PubMed Central  Google Scholar 

  46. Aouizerat BE, Miaskowski CA, Gay C, Portillo CJ, Coggins T, Davis H, et al. Risk factors and symptoms associated with pain in HIV-infected adults. J Assoc Nurses AIDS Care. 2010;21:125–33.

    PubMed  PubMed Central  Google Scholar 

  47. Breitbart W, McDonald MV, Rosenfeld B, Passik SD, Hewitt D, Thaler H, et al. Pain in ambulatory AIDS patients. I: pain characteristics and medical correlates. Pain. 1996;68:315–21.

    PubMed  CAS  Google Scholar 

  48. Del Borgo C, Izzi I, Chiarotti F, Del Forno A, Moscati AM, Cornacchione E, et al. Multidimensional aspects of pain in HIV-infected individuals. AIDS Patient Care STDs. 2001;15:95–102.

    PubMed  Google Scholar 

  49. Wahab KW, Salami AK. Pain as a symptom in patients living with HIV/AIDS seen at the outpatient clinic of a Nigerian tertiary hospital. J Int Assoc Physicians AIDS Care. 2011;10:35–39.

    Google Scholar 

  50. Phillips TJ, Cherry CL, Cox S, Marshall SJ, Rice AS. Pharmacological treatment of painful HIV-associated sensory neuropathy: a systematic review and meta-analysis of randomised controlled trials. PloS one. 2010;5:e14433.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Lawson E, Sabin C, Perry N, Richardson D, Gilleece Y, Churchill D, et al. Is HIV Painful? An epidemiologic study of the prevalence and risk factors for pain in HIV-infected patients. Clin J pain. 2015;31:813–9.

    PubMed  PubMed Central  Google Scholar 

  52. Crowe SM, McGrath MS, Elbeik T, Kirihara J, Mills J. Comparative assessment of antiretrovirals in human monocyte-macrophages and lymphoid cell lines acutely and chronically infected with the human immunodeficiency virus. J Med Virol. 1989;29:176–80.

    PubMed  CAS  Google Scholar 

  53. Bocedi A, Notaril S, Narciso P, Bolli A, Fasano M, Ascenzi P. Binding of anti-HIV drugs to human serum albumin. IUBMB life. 2004;56:609–14.

    PubMed  CAS  Google Scholar 

  54. Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O’Doherty U, Paxinos EE, et al. Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proc Natl Acad Sci USA. 2016;113:8783–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Imamichi H, Smith M, Adelsberger JW, Izumi T, Scrimieri F, Sherman BT, et al. Defective HIV-1 proviruses produce viral proteins. Proc Natl Acad Sci USA. 2020;117:3704–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR, Thomas AS, et al. Defective HIV-1 proviruses are expressed and can be recognized by cytotoxic T lymphocytes, which shape the proviral landscape. Cell Host Microbe. 2017;21:494–506 e494.

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Milligan ED, Mehmert KK, Hinde JL, Harvey LO, Martin D, Tracey KJ, et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120. Brain Res. 2000;861:105–16.

    PubMed  CAS  Google Scholar 

  58. Oh SB, Tran PB, Gillard SE, Hurley RW, Hammond DL, Miller RJ. Chemokines and glycoprotein120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J Neurosci. 2001;21:5027–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Milligan ED, O’Connor KA, Nguyen KT, Armstrong CB, Twining C, Gaykema RP, et al. Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci. 2001;21:2808–19.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Chi X, Amet T, Byrd D, Chang KH, Shah K, Hu N, et al. Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain. PloS one. 2011;6:e24412.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Bagdas D, Paris JJ, Carper M, Wodarski R, Rice ASC, Knapp PE, et al. Conditional expression of HIV-1 tat in the mouse alters the onset and progression of tonic, inflammatory and neuropathic hypersensitivity in a sex-dependent manner. Eur J Pain. 2020;24:1609–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Acharjee S, Noorbakhsh F, Stemkowski PL, Olechowski C, Cohen EA, Ballanyi K, et al. HIV-1 viral protein R causes peripheral nervous system injury associated with in vivo neuropathic pain. FASEB J. 2010;24:4343–53.

    PubMed  CAS  Google Scholar 

  63. Hagler DN, Frame PT. Azidothymidine neurotoxicity. Lancet. 1986;2:1392–3.

    PubMed  CAS  Google Scholar 

  64. Saracchini S, Vaccher E, Covezzi E, Tortorici G, Carbone A, Tirelli U. Lethal neurotoxicity associated to azidothymidine therapy. J Neurol Neurosurg Psychiatry. 1989;52:544–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Dragovic G, Jevtovic D. Nucleoside reverse transcriptase inhibitor usage and the incidence of peripheral neuropathy in HIV/AIDS patients. Antivir Chem Chemother. 2003;14:281–4.

    PubMed  CAS  Google Scholar 

  66. Pettersen JA, Jones G, Worthington C, Krentz HB, Keppler OT, Hoke A, et al. Sensory neuropathy in human immunodeficiency virus/acquired immunodeficiency syndrome patients: protease inhibitor-mediated neurotoxicity. Ann Neurol. 2006;59:816–24.

    PubMed  CAS  Google Scholar 

  67. Menezes CN, Maskew M, Sanne I, Crowther NJ, Raal FJ. A longitudinal study of stavudine-associated toxicities in a large cohort of South African HIV infected subjects. BMC Infect Dis. 2011;11:244.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Du Pasquier RA, Jilek S, Kalubi M, Yerly S, Fux CA, Gutmann C, et al. Marked increase of the astrocytic marker S100B in the cerebrospinal fluid of HIV-infected patients on LPV/r-monotherapy. Aids. 2013;27:203–10.

    PubMed  Google Scholar 

  69. Cassol E, Misra V, Dutta A, Morgello S, Gabuzda D. Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. Aids. 2014;28:1579–91.

    PubMed  CAS  Google Scholar 

  70. Jensen BK, Monnerie H, Mannell MV, Gannon PJ, Espinoza CA, Erickson MA, et al. Altered oligodendrocyte maturation and Myelin maintenance: the role of antiretrovirals in HIV-associated neurocognitive disorders. J Neuropathol Exp Neurol. 2015;74:1093–118.

    PubMed  CAS  Google Scholar 

  71. Gibert CL. Treatment guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents: an update. Fed Pr. 2016;33:31S–36S.

    Google Scholar 

  72. Dalakas MC. Peripheral neuropathy and antiretroviral drugs. J Peripheral Nerv Syst. 2001;6:14–20.

    CAS  Google Scholar 

  73. Kallianpur AR, Hulgan T. Pharmacogenetics of nucleoside reverse-transcriptase inhibitor-associated peripheral neuropathy. Pharmacogenomics. 2009;10:623–37.

    PubMed  CAS  Google Scholar 

  74. Ellis RJ, Marquie-Beck J, Delaney P, Alexander T, Clifford DB, McArthur JC, et al. Human immunodeficiency virus protease inhibitors and risk for peripheral neuropathy. Ann Neurol. 2008;64:566–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Wallace VC, Blackbeard J, Segerdahl AR, Hasnie F, Pheby T, McMahon SB, et al. Characterization of rodent models of HIV-gp120 and anti-retroviral-associated neuropathic pain. Brain. 2007;130:2688–702.

    PubMed  Google Scholar 

  76. Zheng X, Ouyang H, Liu S, Mata M, Fink DJ, Hao S. TNFalpha is involved in neuropathic pain induced by nucleoside reverse transcriptase inhibitor in rats. Brain Behav Immun. 2011;25:1668–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Renn CL, Leitch CC, Lessans S, Rhee P, McGuire WC, Smith BA, et al. Brain-derived neurotrophic factor modulates antiretroviral-induced mechanical allodynia in the mouse. J Neurosci Res. 2011;89:1551–65.

    PubMed  CAS  Google Scholar 

  78. Sanna MD, Ghelardini C, Galeotti N. Blockade of the spinal BDNF-activated JNK pathway prevents the development of antiretroviral-induced neuropathic pain. Neuropharmacology. 2016;105:543–52.

    PubMed  CAS  Google Scholar 

  79. Huang W, Calvo M, Pheby T, Bennett DLH, Rice ASC. A rodent model of HIV protease inhibitor indinavir induced peripheral neuropathy. Pain. 2017;158:75–85.

    PubMed  CAS  Google Scholar 

  80. Wu T, Zhang J, Geng M, Tang SJ, Zhang W, Shu J. Nucleoside reverse transcriptase inhibitors (NRTIs) induce proinflammatory cytokines in the CNS via Wnt5a signaling. Sci Rep. 2017;7:4117.

    PubMed  PubMed Central  Google Scholar 

  81. Yuan S, Shi Y, Guo K, Tang SJ. Nucleoside Reverse Transcriptase Inhibitors (NRTIs) induce pathological pain through Wnt5a-mediated neuroinflammation in aging mice. J Neuroimmune Pharmacol. 2018;13:230–6.

    PubMed  PubMed Central  Google Scholar 

  82. Yang Y, Liu X, Wu T, Zhang W, Shu J, He Y, et al. Quercetin attenuates AZT-induced neuroinflammation in the CNS. Sci Rep. 2018;8:6194.

    PubMed  PubMed Central  Google Scholar 

  83. Bush K, Wairkar Y, Tang S-J. Nucleoside reverse transcriptase inhibitors are the major class of HIV antiretroviral therapeutics that induce neuropathic pain in Mice. bioRxiv (2022): 2022.2001.2027.478061.

  84. Margolis AM, Heverling H, Pham PA, Stolbach A. A review of the toxicity of HIV medications. J Med Toxicol. 2014;10:26–39.

    PubMed  CAS  Google Scholar 

  85. Iida T, Yi H, Liu S, Huang W, Kanda H, Lubarsky DA, et al. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats. Exp Neurol. 2016;281:17–27.

    PubMed  CAS  Google Scholar 

  86. Zheng W, Huang W, Liu S, Levitt RC, Candiotti KA, Lubarsky DA, et al. IL-10 mediated by herpes simplex virus vector reduces neuropathic pain induced by HIV gp120 combined with ddC in rats. Mol Pain. 2014;10:49.

    PubMed  PubMed Central  Google Scholar 

  87. Shi Y, Yuan S, Tang SJ. Morphine and HIV-1 gp120 cooperatively promote pathogenesis in the spinal pain neural circuit. Mol Pain. 2019;15:1744806919868380.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Ferrari LF, Levine JD. Alcohol consumption enhances antiretroviral painful peripheral neuropathy by mitochondrial mechanisms. Eur J Neurosci. 2010;32:811–8.

    PubMed  PubMed Central  Google Scholar 

  89. Bell JE, Arango JC, Anthony IC. Neurobiology of multiple insults: HIV-1-associated brain disorders in those who use illicit drugs. J NeuroImmune Pharmacol. 2006;1:182–91.

    PubMed  Google Scholar 

  90. Melli G, Keswani SC, Fischer A, Chen W, Hoke A. Spatially distinct and functionally independent mechanisms of axonal degeneration in a model of HIV-associated sensory neuropathy. Brain. 2006;129:1330–8.

    PubMed  Google Scholar 

  91. Avdoshina V, Mahoney M, Gilmore SF, Wenzel ED, Anderson A, Letendre SL, et al. HIV influences microtubule associated protein-2: potential marker of HIV-associated neurocognitive disorders. AIDS. 2020;34:979–88.

    PubMed  CAS  Google Scholar 

  92. Zhang X, Thayer SA. Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology. 2018;128:269–81.

    PubMed  CAS  Google Scholar 

  93. Hesselgesser J, Halks-Miller M, DelVecchio V, Peiper SC, Hoxie J, Kolson DL, et al. CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol. 1997;7:112–21.

    PubMed  CAS  Google Scholar 

  94. Jung H, Miller RJ. Activation of the nuclear factor of activated T-cells (NFAT) mediates upregulation of CCR2 chemokine receptors in dorsal root ganglion (DRG) neurons: a possible mechanism for activity-dependent transcription in DRG neurons in association with neuropathic pain. Mol Cell Neurosci. 2008;37:170–7.

    PubMed  CAS  Google Scholar 

  95. Marchionni I, Beaumont M, Maccaferri G. The chemokine CXCL12 and the HIV-1 envelope protein gp120 regulate spontaneous activity of Cajal-Retzius cells in opposite directions. J Physiol. 2012;590:3185–202.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen L, Liu J, Xu C, Keblesh J, Zang W, Xiong H. HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PloS one. 2011;6:e25994.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Bagetta G, Corasaniti MT, Berliocchi L, Nistico R, Giammarioli AM, Malorni W, et al. Involvement of interleukin-1beta in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience. 1999;89:1051–66.

    PubMed  CAS  Google Scholar 

  98. Corasaniti MT, Bilotta A, Strongoli MC, Navarra M, Bagetta G, Di Renzo G. HIV-1 coat protein gp120 stimulates interleukin-1beta secretion from human neuroblastoma cells: evidence for a role in the mechanism of cell death. Br J Pharmacol. 2001;134:1344–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Corasaniti MT, Piccirilli S, Paoletti A, Nistico R, Stringaro A, Malorni W, et al. Evidence that the HIV-1 coat protein gp120 causes neuronal apoptosis in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor. Neurosci Lett. 2001;312:67–70.

    PubMed  CAS  Google Scholar 

  100. Lipton SA, Sucher NJ, Kaiser PK, Dreyer EB. Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron. 1991;7:111–8.

    PubMed  CAS  Google Scholar 

  101. Bennett BA, Rusyniak DE, Hollingsworth CK. HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures. Brain Res. 1995;705:168–76.

    PubMed  CAS  Google Scholar 

  102. Chen W, Tang Z, Fortina P, Patel P, Addya S, Surrey S, et al. Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways. Virology. 2005;334:59–73.

    PubMed  CAS  Google Scholar 

  103. Wodarski R, Bagdas D, Paris JJ, Pheby T, Toma W, Xu R, et al. Reduced intraepidermal nerve fibre density, glial activation, and sensory changes in HIV type-1 Tat-expressing female mice: involvement of Tat during early stages of HIV-associated painful sensory neuropathy. Pain Rep. 2018;3:e654.

    PubMed  PubMed Central  Google Scholar 

  104. Toma W, Paris JJ, Warncke UO, Nass SR, Caillaud M, McKiver B, et al. Persistent sensory changes and sex differences in transgenic mice conditionally expressing HIV-1 Tat regulatory protein. Exp Neurol. 2022;358:114226.

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Cirino TJ, Alleyne AR, Duarte V, Figueroa A, Simons CA, Anceaume EM, et al. Expression of Human Immunodeficiency Virus Transactivator of Transcription (HIV-Tat(1-86)) protein alters nociceptive processing that is sensitive to anti-oxidant and anti-inflammatory interventions. J Neuroimmune Pharmacol. 2022;17:152–64.

    PubMed  Google Scholar 

  106. Kim HJ, Martemyanov KA, Thayer SA. Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci. 2008;28:12604–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Shin AH, Thayer SA. Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures. Mol Cell Neurosci. 2013;54:22–29.

    PubMed  CAS  Google Scholar 

  108. Neri E, Musante V, Pittaluga A. Effects of the HIV-1 viral protein TAT on central neurotransmission: role of group I metabotropic glutamate receptors. Int Rev Neurobiol. 2007;82:339–56.

    PubMed  CAS  Google Scholar 

  109. Fitting S, Knapp PE, Zou S, Marks WD, Bowers MS, Akbarali HI. et al.Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na(+) influx, mitochondrial instability, and Ca(2)(+) overload.J Neurosci. 2014;34:12850–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Ferri KF, Jacotot E, Blanco J, Este JA, Kroemer G. Mitochondrial control of cell death induced by HIV-1-encoded proteins. Ann N. Y Acad Sci. 2000;926:149–64.

    PubMed  CAS  Google Scholar 

  111. Norman JP, Perry SW, Kasischke KA, Volsky DJ, Gelbard HA. HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol. 2007;178:869–76.

    PubMed  CAS  Google Scholar 

  112. Na H, Acharjee S, Jones G, Vivithanaporn P, Noorbakhsh F, McFarlane N, et al. Interactions between human immunodeficiency virus (HIV)-1 Vpr expression and innate immunity influence neurovirulence. Retrovirology. 2011;8:44.

    PubMed  PubMed Central  CAS  Google Scholar 

  113. King JE, Eugenin EA, Buckner CM, Berman JW. HIV tat and neurotoxicity. Microbes Infect. 2006;8:1347–57.

    PubMed  CAS  Google Scholar 

  114. Wu S, Yang S, Bloe CB, Zhuang R, Huang J, Zhang W. Identification of key genes and pathways in mouse spinal cord involved in ddC-Induced neuropathic pain by transcriptome sequencing. J Mol Neurosci. 2021;71:651–61.

    PubMed  CAS  Google Scholar 

  115. Venhoff N, Lebrecht D, Deveaud C, Beauvoit B, Bonnet J, Muller K, et al. Oral uridine supplementation antagonizes the peripheral neuropathy and encephalopathy induced by antiretroviral nucleoside analogues. AIDS. 2010;24:345–52.

    PubMed  CAS  Google Scholar 

  116. Bhangoo SK, Ren D, Miller RJ, Chan DM, Ripsch MS, Weiss C, et al. CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behave Immun. 2007;21:581–91.

    CAS  Google Scholar 

  117. Sanchez AB, Varano GP, de Rozieres CM, Maung R, Catalan IC, Dowling CC, et al. Antiretrovirals, Methamphetamine, and HIV-1 Envelope Protein gp120 compromise neuronal energy homeostasis in association with various degrees of synaptic and neuritic damage. Antimicrob Agents Chemother. 2016;60:168–79.

    PubMed  CAS  Google Scholar 

  118. Arnaudo E, Dalakas M, Shanske S, Moraes CT, DiMauro S, Schon EA. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet. 1991;337:508–10.

    PubMed  CAS  Google Scholar 

  119. Cherry CL, Gahan ME, McArthur JC, Lewin SR, Hoy JF, Wesselingh SL. Exposure to dideoxynucleosides is reflected in lowered mitochondrial DNA in subcutaneous fat. J Acquired Immune Defic Syndr. 2002;30:271–7.

    CAS  Google Scholar 

  120. White AJ. Mitochondrial toxicity and HIV therapy. Sex Transm Infect. 2001;77:158–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Gannon PJ, Akay-Espinoza C, Yee AC, Briand LA, Erickson MA, Gelman BB, et al. HIV protease inhibitors alter amyloid precursor protein processing via beta-Site amyloid precursor protein cleaving enzyme-1 translational up-regulation. Am J Pathol. 2017;187:91–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Liu B, Liu X, Tang SJ. Interactions of opioids and HIV infection in the pathogenesis of chronic pain. Front Microbiol. 2016;7:103.

    PubMed  PubMed Central  Google Scholar 

  123. Roeckel LA, Le Coz GM, Gaveriaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience. 2016;338:160–82.

    PubMed  CAS  Google Scholar 

  124. Shi Y, Yuan S, Tang SJ. Reactive Oxygen Species (ROS) are critical for morphine exacerbation of HIV-1 gp120-induced pain. J Neuroimmune Pharmacol. 2021;16:581–91.

    PubMed  Google Scholar 

  125. Addis DR, DeBerry JJ, Aggarwal S. Chronic Pain in HIV. Mol Pain. 2020;16:1744806920927276.

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Burdo TH, Lackner A, Williams KC. Monocyte/macrophages and their role in HIV neuropathogenesis. Immunol Rev. 2013;254:102–13.

    PubMed  PubMed Central  Google Scholar 

  127. Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci. 2018;19:138–52.

    PubMed  CAS  Google Scholar 

  128. Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, et al. Microglial cells: the main HIV-1 reservoir in the brain. Front Cell Infect Microbiol. 2019;9:362.

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Denny-Brown D, Adams RD, Fitzgerald PJ. Pathologic features of herpes zoster: a note On “Geniculate Herpes”. Arch Neurol Psychiatry. 1944;51:216–31.

    Google Scholar 

  130. Del Valle L, Schwartzman RJ, Alexander G. Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome. Brain Behav Immun. 2009;23:85–91.

    PubMed  Google Scholar 

  131. Jeon SY, Seo S, Lee JS, Choi SH, Lee DH, Jung YH, et al. [11C]-(R)-PK11195 positron emission tomography in patients with complex regional pain syndrome: a pilot study. Medicine. 2017;96:e5735.

    PubMed  PubMed Central  Google Scholar 

  132. Banati RB, Cagnin A, Brooks DJ, Gunn RN, Myers R, Jones T, et al. Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport. 2001;12:3439–42.

    PubMed  CAS  Google Scholar 

  133. Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, et al. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138:604–15.

    PubMed  PubMed Central  Google Scholar 

  134. Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron. 2018;100:1292–311.

    PubMed  PubMed Central  CAS  Google Scholar 

  135. Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3:130181.

    PubMed  PubMed Central  Google Scholar 

  136. Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, et al. Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med. 2017;23:164–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE, et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 2013;16:183–92.

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Liu X, Bae C, Liu B, Zhang YM, Zhou X, Zhang D et al. Development of opioid-induced hyperalgesia depends on reactive astrocytes controlled by Wnt5a signaling. Mol Psychiatry. 2022;28:767–79.

  139. Sheng WS, Hu S, Hegg CC, Thayer SA, Peterson PK. Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin Immunol. 2000;96:243–51.

    PubMed  CAS  Google Scholar 

  140. Chivero ET, Guo ML, Periyasamy P, Liao K, Callen SE, Buch S. HIV-1 Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation. J Neurosci. 2017;37:3599–609.

    PubMed  PubMed Central  CAS  Google Scholar 

  141. Walsh JG, Reinke SN, Mamik MK, McKenzie BA, Maingat F, Branton WG, et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS. Retrovirology. 2014;11:35.

    PubMed  PubMed Central  Google Scholar 

  142. Kanda H, Kobayashi K, Yamanaka H, Okubo M, Noguchi K. Microglial TNFalpha Induces COX2 and PGI2 Synthase Expression in Spinal Endothelial Cells during Neuropathic Pain. eNeuro. 2017;4:0064–17.

  143. Wang Y, Liao J, Tang SJ, Shu J, Zhang W. HIV-1 gp120 upregulates Brain-Derived Neurotrophic Factor (BDNF) expression in BV2 Cells via the Wnt/beta-Catenin Signaling Pathway. J Mol Neurosci. 2017;62:199–208.

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14:331–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkuhler J. Selective activation of microglia facilitates synaptic strength. J Neurosci. 2015;35:4552–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  146. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci. 2003;23:8692–8700.

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Kronschlager MT, Drdla-Schutting R, Gassner M, Honsek SD, Teuchmann HL, Sandkuhler J. Gliogenic LTP spreads widely in nociceptive pathways. Science. 2016;354:1144–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Zhou X, Tao L, Zhao M, Wu S, Obeng E, Wang D, et al. Wnt/beta-catenin signaling regulates brain-derived neurotrophic factor release from spinal microglia to mediate HIV1 gp120-induced neuropathic pain. Mol Pain. 2020;16:1744806920922100.

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. 2008;28:11263–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Keller AF, Beggs S, Salter MW, De Koninck Y. Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain. 2007;3:27.

    PubMed  PubMed Central  Google Scholar 

  151. Hong S, Dissing-Olesen L, Stevens B. New insights on the role of microglia in synaptic pruning in health and disease. Curr Opin Neurobiol. 2016;36:128–34.

    PubMed  CAS  Google Scholar 

  152. Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Investig. 2014;124:2023–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Ghasemlou N, Chiu IM, Julien JP, Woolf CJ. CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci USA. 2015;112:E6808–6817.

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Esper RM, Loeb JA. Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. J Neurosci. 2004;24:6218–27.

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, et al. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18-kD fibroblast growth factor-2. Brain Res. 2000;885:172–81.

    PubMed  CAS  Google Scholar 

  156. Flatters SJ, Fox AJ, Dickenson AH. Nerve injury alters the effects of interleukin-6 on nociceptive transmission in peripheral afferents. Eur J Pharmacol. 2004;484:183–91.

    PubMed  CAS  Google Scholar 

  157. Zelenka M, Schafers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain. 2005;116:257–63.

    PubMed  CAS  Google Scholar 

  158. Yu X, Liu H, Hamel KA, Morvan MG, Yu S, Leff J, et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020;11:264.

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Rizzuto N, Cavallaro T, Monaco S, Morbin M, Bonetti B, Ferrari S, et al. Role of HIV in the pathogenesis of distal symmetrical peripheral neuropathy. Acta Neuropathol. 1995;90:244–50.

    PubMed  CAS  Google Scholar 

  160. Laast VA, Shim B, Johanek LM, Dorsey JL, Hauer PE, Tarwater PM, et al. Macrophage-mediated dorsal root ganglion damage precedes altered nerve conduction in SIV-infected macaques. Am J Pathol. 2011;179:2337–45.

    PubMed  PubMed Central  Google Scholar 

  161. Lakritz JR, Bodair A, Shah N, O’Donnell R, Polydefkis MJ, Miller AD, et al. Monocyte traffic, dorsal root ganglion histopathology, and loss of intraepidermal nerve fiber density in SIV peripheral neuropathy. Am J Pathol. 2015;185:1912–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  162. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.

    PubMed  CAS  Google Scholar 

  163. Burdo TH, Walker J, Williams KC. Macrophage polarization in AIDS: dynamic Interface between anti-viral and anti-inflammatory macrophages during acute and chronic infection. J Clin Cell Immunol. 2015;6:333.

    PubMed  PubMed Central  Google Scholar 

  164. Garrison CJ, Dougherty PM, Kajander KC, Carlton SM. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 1991;565:1–7.

    PubMed  CAS  Google Scholar 

  165. Di Cesare Mannelli L, Pacini A, Micheli L, Tani A, Zanardelli M, Ghelardini C. Glial role in oxaliplatin-induced neuropathic pain. Exp Neurol. 2014;261:22–33.

    PubMed  Google Scholar 

  166. Obata H, Eisenach JC, Hussain H, Bynum T, Vincler M. Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain. 2006;7:816–22.

    PubMed  CAS  Google Scholar 

  167. Xu Y, Cheng G, Zhu Y, Zhang X, Pu S, Wu J, et al. Anti-nociceptive roles of the glia-specific metabolic inhibitor fluorocitrate in paclitaxel-evoked neuropathic pain. Acta Biochim et Biophys Sin. 2016;48:902–8.

    CAS  Google Scholar 

  168. Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q, et al. Macrophages but not Astrocytes Harbor HIV DNA in the Brains of HIV-1-Infected aviremic individuals on suppressive antiretroviral therapy. J Neuroimmune Pharmacol. 2019;14:110–9.

    PubMed  Google Scholar 

  169. Al-Harthi L, Nath A. Letter to editor. J Neuroimmune Pharmacol. 2019;14:6.

    PubMed  Google Scholar 

  170. Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol. 2006;12:146–52.

    PubMed  Google Scholar 

  171. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. 2009;66:253–8.

    PubMed  Google Scholar 

  172. Donoso M, D’Amico D, Valdebenito S, Hernandez CA, Prideaux B, Eugenin EA. Identification, quantification, and characterization of HIV-1 reservoirs in the human brain. Cells. 2022;11:2379.

    PubMed  PubMed Central  CAS  Google Scholar 

  173. Huang YH, Bergles DE. Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol. 2004;14:346–52.

    PubMed  CAS  Google Scholar 

  174. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13:713–25.

    PubMed  CAS  Google Scholar 

  175. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16:675–86.

    PubMed  CAS  Google Scholar 

  176. Gegelashvili G, Bjerrum OJ. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. J Neurochem. 2014;131:712–30.

    PubMed  CAS  Google Scholar 

  177. Vesce S, Bezzi P, Rossi D, Meldolesi J, Volterra A. HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS Lett. 1997;411:107–9.

    PubMed  CAS  Google Scholar 

  178. Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, et al. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology. 2003;312:60–73.

    PubMed  CAS  Google Scholar 

  179. Zhou BY, Liu Y, Kim B, Xiao Y, He JJ. Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes. Mol Cell Neurosci. 2004;27:296–305.

    PubMed  CAS  Google Scholar 

  180. Ozawa T, Nakagawa T, Shige K, Minami M, Satoh M. Changes in the expression of glial glutamate transporters in the rat brain accompanied with morphine dependence and naloxone-precipitated withdrawal. Brain Res. 2001;905:254–8.

    PubMed  CAS  Google Scholar 

  181. Mao J, Sung B, Ji RR, Lim G. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci. 2002;22:8312–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  182. Harada K, Kamiya T, Tsuboi T. Gliotransmitter release from astrocytes: functional, developmental, and pathological implications in the brain. Front Neurosci. 2015;9:499.

    PubMed  Google Scholar 

  183. Tonkin RS, Bowles C, Perera CJ, Keating BA, Makker PGS, Duffy SS, et al. Attenuation of mechanical pain hypersensitivity by treatment with Peptide5, a connexin-43 mimetic peptide, involves inhibition of NLRP3 inflammasome in nerve-injured mice. Exp Neurol. 2018;300:1–12.

    PubMed  CAS  Google Scholar 

  184. Wang A, Xu C. The role of connexin43 in neuropathic pain induced by spinal cord injury. Acta Biochim et Biophys Sin. 2019;51:555–61.

    CAS  Google Scholar 

  185. Gajardo-Gomez R, Santibanez CA, Labra VC, Gomez GI, Eugenin EA, Orellana JA. HIV gp120 protein increases the function of connexin 43 hemichannels and Pannexin-1 channels in astrocytes: repercussions on astroglial function. Int J Mol Sci. 2020;21:2503.

    PubMed  PubMed Central  CAS  Google Scholar 

  186. Berman JW, Carvallo L, Buckner CM, Luers A, Prevedel L, Bennett MV, et al. HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS. J Neuroinflamm. 2016;13:54.

    Google Scholar 

  187. Eugenin EA. Role of connexin/pannexin containing channels in infectious diseases. FEBS Lett. 2014;588:1389–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  188. Gazerani P. Satellite glial cells in pain research: a targeted viewpoint of potential and future directions. Front Pain Res. 2021;2:646068.

    Google Scholar 

  189. Wu Z, Wang S, Wu I, Mata M, Fink DJ. Activation of TLR-4 to produce tumour necrosis factor-alpha in neuropathic pain caused by paclitaxel. Eur J Pain. 2015;19:889–98.

    PubMed  CAS  Google Scholar 

  190. Yi Z, Xie L, Zhou C, Yuan H, Ouyang S, Fang Z, et al. P2Y12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2’,3’-dideoxycytidine. Purinergic Signal. 2018;14:47–58.

    PubMed  CAS  Google Scholar 

  191. Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010;11:275–83.

    PubMed  CAS  Google Scholar 

  192. McDonald JW, Belegu V. Demyelination and remyelination after spinal cord injury. J Neurotrauma. 2006;23:345–59.

    PubMed  Google Scholar 

  193. Gritsch S, Lu J, Thilemann S, Wortge S, Mobius W, Bruttger J, et al. Oligodendrocyte ablation triggers central pain independently of innate or adaptive immune responses in mice. Nat Commun. 2014;5:5472.

    PubMed  CAS  Google Scholar 

  194. Zarpelon AC, Rodrigues FC, Lopes AH, Souza GR, Carvalho TT, Pinto LG, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54–65.

    PubMed  CAS  Google Scholar 

  195. Cannella B, Raine CS. Multiple sclerosis: cytokine receptors on oligodendrocytes predict innate regulation. Ann Neurol. 2004;55:46–57.

    PubMed  CAS  Google Scholar 

  196. Ramesh G, Benge S, Pahar B, Philipp MT. A possible role for inflammation in mediating apoptosis of oligodendrocytes as induced by the Lyme disease spirochete Borrelia burgdorferi. J Neuroinflamm. 2012;9:72.

    CAS  Google Scholar 

  197. Moyon S, Dubessy AL, Aigrot MS, Trotter M, Huang JK, Dauphinot L, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015;35:4–20.

    PubMed  PubMed Central  Google Scholar 

  198. G A, S PK, B N, Bs N. HIV associated sensory neuropathy. J Clin Diagn Res. 2014;8:MC04–07.

    PubMed  PubMed Central  Google Scholar 

  199. Ferrari S, Vento S, Monaco S, Cavallaro T, Cainelli F, Rizzuto N, et al. Human immunodeficiency virus-associated peripheral neuropathies. Mayo Clin Proc. 2006;81:213–9.

    PubMed  Google Scholar 

  200. Shamash S, Reichert F, Rotshenker S. The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 2002;22:3052–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  201. Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS. Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem. 1995;64:850–8.

    PubMed  CAS  Google Scholar 

  202. Rotshenker S. Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflamm. 2011;8:109.

    CAS  Google Scholar 

  203. Keswani SC, Polley M, Pardo CA, Griffin JW, McArthur JC, Hoke A. Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol. 2003;54:287–96.

    PubMed  CAS  Google Scholar 

  204. Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 promotes lysosomal exocytosis in human schwann cells. Front Cell Neurosci. 2019;13:329.

    PubMed  PubMed Central  CAS  Google Scholar 

  205. Huang J, Lin F, Hu Y, Bloe CB, Wang D, Zhang W. From Initiation to Maintenance: HIV-1 Gp120-induced neuropathic pain exhibits different molecular mechanisms in the mouse spinal cord via bioinformatics analysis based on RNA Sequencing. J Neuroimmune Pharmacol. 2022;17:553–75.

  206. Ochi-ishi R, Nagata K, Inoue T, Tozaki-Saitoh H, Tsuda M, Inoue K. Involvement of the chemokine CCL3 and the purinoceptor P2X7 in the spinal cord in paclitaxel-induced mechanical allodynia. Mol Pain. 2014;10:53.

    PubMed  PubMed Central  Google Scholar 

  207. Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O’Connor MJ, et al. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol. 1999;73:205–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  208. Klein RS, Williams KC, Alvarez-Hernandez X, Westmoreland S, Force T, Lackner AA, et al. Chemokine receptor expression and signaling in macaque and human fetal neurons and astrocytes: implications for the neuropathogenesis of AIDS. J Immunol. 1999;163:1636–46.

    PubMed  CAS  Google Scholar 

  209. Lisi L, Tramutola A, De Luca A, Navarra P, Dello Russo C. Modulatory effects of the CCR5 antagonist maraviroc on microglial pro-inflammatory activation elicited by gp120. J Neurochem. 2012;120:106–14.

    PubMed  CAS  Google Scholar 

  210. Piotrowska A, Kwiatkowski K, Rojewska E, Makuch W, Mika J. Maraviroc reduces neuropathic pain through polarization of microglia and astroglia—Evidence from in vivo and in vitro studies. Neuropharmacology. 2016;108:207–19.

    PubMed  CAS  Google Scholar 

  211. Chen J, Park CS, Tang SJ. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem. 2006;281:11910–6.

    PubMed  CAS  Google Scholar 

  212. Li Y, Li B, Wan X, Zhang W, Zhong L, Tang SJ. NMDA receptor activation stimulates transcription-independent rapid wnt5a protein synthesis via the MAPK signaling pathway. Mol Brain. 2012;5:1.

    PubMed  PubMed Central  Google Scholar 

  213. Wan XZ, Li B, Li YC, Yang XL, Zhang W, Zhong L, et al. Activation of NMDA receptors upregulates a disintegrin and metalloproteinase 10 via a Wnt/MAPK signaling pathway. J Neurosci. 2012;32:3910–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  214. Li B, Shi Y, Shu J, Gao J, Wu P, Tang SJ. Wingless-type mammary tumor virus integration site family, member 5A (Wnt5a) regulates human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120)-induced expression of pro-inflammatory cytokines via the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem. 2013;288:13610–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  215. Shi Y, Yuan S, Li B, Wang J, Carlton SM, Chung K, et al. Regulation of Wnt signaling by nociceptive input in animal models. Mol Pain. 2012;8:47.

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Tang SJ. Synaptic activity-regulated Wnt signaling in synaptic plasticity, glial function and chronic pain. CNS Neurol Disord Drug Targets. 2014;13:737–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  217. Yuan S, Shi Y, Tang SJ. Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol. 2012;7:904–13.

    PubMed  Google Scholar 

  218. Zhang YK, Huang ZJ, Liu S, Liu YP, Song AA, Song XJ. WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Investig. 2013;123:2268–86.

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Shi Y, Shu J, Gelman BB, Lisinicchia JG, Tang SJ. Wnt signaling in the pathogenesis of human HIV-associated pain syndromes. J Neuroimmune Pharmacol. 2013;8:956–64.

    PubMed  PubMed Central  Google Scholar 

  220. Yuan SB, Ji G, Li B, Andersson T, Neugebauer V, Tang SJ. A Wnt5a signaling pathway in the pathogenesis of HIV-1 gp120-induced pain. Pain. 2015;156:1311–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  221. Cappoli N, Tabolacci E, Aceto P, Dello Russo C. The emerging role of the BDNF-TrkB signaling pathway in the modulation of pain perception. J Neuroimmunol. 2020;349:577406.

    PubMed  CAS  Google Scholar 

  222. Ren K, Torres R. Role of interleukin-1beta during pain and inflammation. Brain Res Rev. 2009;60:57–64.

    PubMed  CAS  Google Scholar 

  223. Leung L, Cahill CM. TNF-alpha and neuropathic pain-a review. J Neuroinflamm. 2010;7:27.

    Google Scholar 

  224. Zhang L, Berta T, Xu ZZ, Liu T, Park JY, Ji RR. TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: distinct role of TNF receptor subtypes 1 and 2. Pain. 2011;152:419–27.

    PubMed  CAS  Google Scholar 

  225. Liu Y, Zhou LJ, Wang J, Li D, Ren WJ, Peng J, et al. TNF-alpha differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37:871–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  226. Kawasaki Y, Zhang L, Cheng JK, Ji RR. Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28:5189–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  227. Guo W, Wang H, Watanabe M, Shimizu K, Zou S, LaGraize SC, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27:6006–18.

    PubMed  PubMed Central  CAS  Google Scholar 

  228. Namisango E, Harding R, Atuhaire L, Ddungu H, Katabira E, Muwanika FR, et al. Pain among ambulatory HIV/AIDS patients: multicenter study of prevalence, intensity, associated factors, and effect. J Pain. 2012;13:704–13.

    PubMed  Google Scholar 

  229. Peltzer K, Phaswana-Mafuya N. The symptom experience of people living with HIV and AIDS in the Eastern Cape, South Africa. BMC Health Serv Res. 2008;8:271.

    PubMed  PubMed Central  Google Scholar 

  230. Parker R, Jelsma J, Stein DJ. Pain in amaXhosa women living with HIV/AIDS: a cross-sectional study of ambulant outpatients. BMC Women’s Health. 2017;17:31.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work in the Tang laboratory described in this paper was supported by NIH grants: R01NS079166, R01DA036165, R01NS095747, R01DA050530, R01NS122571, and R01DA057195.

Author information

Authors and Affiliations

Authors

Contributions

Both authors significantly contribute to the writing and revision of the manuscript.

Corresponding author

Correspondence to Shao-Jun Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tang, SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 28, 3613–3624 (2023). https://doi.org/10.1038/s41380-023-02294-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02294-7

Search

Quick links