Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Soluble TNF-α receptor secretion from healthy or dystrophic mice after AAV6-mediated muscle gene transfer

Abstract

Muscle is an attractive target because it is easily accessible; it also offers a permissive environment for adeno-associated virus (AAV)-mediated gene transfer and has an abundant blood vascular supply providing an efficient transport system for the secretion of proteins. However, gene therapy of dystrophic muscle may be more difficult than that of healthy tissue because of degenerative–regenerative processes, and also because of the inflammatory context. In this study we followed the expression levels of secreted inhibitors of the proinflammatory tumor necrosis factor (TNF) cytokine after intramuscular (i.m.) injection of AAV6 into dystrophic mdx and healthy C57BL/10 mice. We used two chimeric proteins, namely, the human or murine TNF-soluble receptor I fused with the murine heavy immunoglobulin chain. We conducted an AAV6 dose–response study and determined the kinetics of transgene expression. In addition, we followed the antibody response against the transgenes and studied their expression pattern in the muscle. Our results show that transduction efficiency is reduced in dystrophic muscles as compared with healthy ones. Furthermore, we found that the immune response against the secreted protein is stronger in mdx mice. Together, our results underscore that the pathological state of the muscle has to be taken into consideration when designing gene therapy approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balaban B, Matthews DJ, Clayton GH, Carry T . Corticosteroid treatment and functional improvement in Duchenne muscular dystrophy: long-term effect. Am J Phys Med Rehabil 2005; 84: 843–850.

    Article  PubMed  Google Scholar 

  2. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 2002; 11: 263–272.

    Article  CAS  PubMed  Google Scholar 

  3. Porreca E, Guglielmi MD, Uncini A, Di Gregorio P, Angelini A, Di Febbo C et al. Haemostatic abnormalities, cardiac involvement and serum tumor necrosis factor levels in X-linked dystrophic patients. Thromb Haemost 1999; 81: 543–546.

    CAS  PubMed  Google Scholar 

  4. Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. Faseb J 2005; 19: 362–370.

    Article  CAS  PubMed  Google Scholar 

  5. Grounds MD, Torrisi J . Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. Faseb J 2004; 18: 676–682.

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh A, Yue Y, Duan D . Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 2006; 8: 298–305.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KJ et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA 1997; 94: 5804–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arruda VR, Hagstrom JN, Deitch J, Heiman-Patterson T, Camire RM, Chu K et al. Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood 2001; 97: 130–138.

    Article  CAS  PubMed  Google Scholar 

  9. Song S, Morgan M, Ellis T, Poirier A, Chesnut K, Wang J et al. Sustained secretion of human alpha-1-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA 1998; 95: 14384–14388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kreiss P, Bettan M, Crouzet J, Scherman D . Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J Gene Med 1999; 1: 245–250.

    Article  CAS  PubMed  Google Scholar 

  11. Deleuze V, Scherman D, Bureau MF . Interleukin-10 expression after intramuscular DNA electrotransfer: kinetic studies. Biochem Biophys Res Commun 2002; 299: 29–34.

    Article  CAS  PubMed  Google Scholar 

  12. Silvestre JS, Mallat Z, Duriez M, Tamarat R, Bureau MF, Scherman D et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ Res 2000; 87: 448–452.

    Article  CAS  PubMed  Google Scholar 

  13. Bloquel C, Bessis N, Boissier MC, Scherman D, Bigey P . Gene therapy of collagen-induced arthritis by electrotransfer of human tumor necrosis factor-alpha soluble receptor I variants. Hum Gene Ther 2004; 15: 189–201.

    Article  CAS  PubMed  Google Scholar 

  14. Bloquel C, Bejjani R, Bigey P, Bedioui F, Doat M, BenEzra D et al. Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-alpha soluble receptor in uveitis. Faseb J 2006; 20: 389–391.

    Article  CAS  PubMed  Google Scholar 

  15. Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V et al. Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 2007; 33: 344–359.

    Article  CAS  PubMed  Google Scholar 

  16. Hartigan-O’Connor D, Kirk CJ, Crawford R, Mule JJ, Chamberlain JS . Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol Ther 2001; 4: 525–533.

    Article  PubMed  Google Scholar 

  17. Wang L, Dobrzynski E, Schlachterman A, Cao O, Herzog RW . Systemic protein delivery by muscle-gene transfer is limited by a local immune response. Blood 2005; 105: 4226–4234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turk R, Sterrenburg E, van der Wees CG, de Meijer EJ, de Menezes RX, Groh S et al. Common pathological mechanisms in mouse models for muscular dystrophies. Faseb J 2006; 20: 127–129.

    Article  CAS  PubMed  Google Scholar 

  19. Egashira K, Koyanagi M, Kitamoto S, Ni W, Kataoka C, Morishita R et al. Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodeling induced by chronic blockade of NO synthesis. Faseb J 2000; 14: 1974–1978.

    Article  CAS  PubMed  Google Scholar 

  20. Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C et al. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 2008; 58: 2356–2367.

    Article  CAS  PubMed  Google Scholar 

  21. Kuru S, Inukai A, Kato T, Liang Y, Kimura S, Sobue G . Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and non-inflammatory myopathies. Acta Neuropathol 2003; 105: 217–224.

    CAS  PubMed  Google Scholar 

  22. Hodgetts S, Radley H, Davies M, Grounds MD . Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 2006; 16: 591–602.

    Article  PubMed  Google Scholar 

  23. Abmayr S, Gregorevic P, Allen JM, Chamberlain JS . Phenotypic improvement of dystrophic muscles by rAAV/microdystrophin vectors is augmented by Igf1 codelivery. Mol Ther 2005; 12: 441–450.

    Article  CAS  PubMed  Google Scholar 

  24. Yuasa K, Sakamoto M, Miyagoe-Suzuki Y, Tanouchi A, Yamamoto H, Li J et al. Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Ther 2002; 9: 1576–1588.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Allen JM, Riddell SR, Gregorevic P, Storb R, Tapscott SJ et al. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 2007; 18: 18–26.

    Article  PubMed  Google Scholar 

  26. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 2007; 15: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Cao O, Swalm B, Dobrzynski E, Mingozzi F, Herzog RW . Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Ther 2005; 12: 1453–1464.

    Article  CAS  PubMed  Google Scholar 

  28. Squire S, Raymackers JM, Vandebrouck C, Potter A, Tinsley J, Fisher R et al. Prevention of pathology in mdx mice by expression of utrophin: analysis using an inducible transgenic expression system. Hum Mol Genet 2002; 11: 3333–3344.

    Article  CAS  PubMed  Google Scholar 

  29. Denti MA, Rosa A, D’Antona G, Sthandier O, De Angelis FG, Nicoletti C et al. Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci USA 2006; 103: 3758–3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007; 447: 87–91.

    Article  CAS  PubMed  Google Scholar 

  31. Miura P, Jasmin BJ . Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 2006; 12: 122–129.

    Article  CAS  PubMed  Google Scholar 

  32. Wang M, Orsini C, Casanova D, Millan JL, Mahfoudi A, Thuillier V . MUSEAP, a novel reporter gene for the study of long-term gene expression in immunocompetent mice. Gene 2001; 279: 99–108.

    Article  CAS  PubMed  Google Scholar 

  33. Douar AM, Poulard K, Stockholm D, Danos O . Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75: 1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Béatrice Marolleau, Angélique Duvallet and Christophe Georger for technical assistance in the histological analyses. This study was conducted with the financial support of the Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Kichler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulay, G., Masurier, C., Bigey, P. et al. Soluble TNF-α receptor secretion from healthy or dystrophic mice after AAV6-mediated muscle gene transfer. Gene Ther 17, 1400–1410 (2010). https://doi.org/10.1038/gt.2010.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.94

Keywords

This article is cited by

Search

Quick links