Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

VEGF blockade decreases the tumor uptake of systemic oncolytic herpes virus but enhances therapeutic efficacy when given after virotherapy

Abstract

Effective therapies for metastatic sarcomas remain elusive. Oncolytic viruses have shown promise as anticancer agents, but their access to metastatic sites following systemic delivery is low. As systemic delivery of small-molecule chemotherapy is enhanced by previous treatment with antiangiogenic agents because of changes in intravascular-to-tumor interstitial pressure, we sought to determine whether antiangiogenic pretreatment increases the antitumor efficacy of systemic virotherapy by increasing virus uptake into tumor. Virus biodistribution and antitumor effects were monitored in tumor-bearing mice given antihuman vascular endothelial growth factor (VEGF) or antimouse VEGFR2 before or after an intravenous (i.v.) injection of virus. Without pretreatment, the average virus titers in the tumor samples amplified 1700-fold over 48 h but were undetectable in other organs. After antiangiogenic treatment, average virus titers in the tumor samples were unchanged or in some cases decreased up to 100-fold. Thus, antiangiogenic pretreatment failed to improve the tumor uptake of systemic oncolytic herpes simplex virus (oHSV), in contrast to previously reported enhanced uptake of small molecules. Superior tumor control because of the combined effects of virus and anti-VEGF was seen most dramatically when anti-VEGF was given after virus. Our data suggest that i.v. oHSV can treat distant sites of disease and can be enhanced by antiangiogenic therapy, but only when given in the proper sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bramwell VH, Anderson D, Charette ML . Doxorubicin-based chemotherapy for the palliative treatment of adult patients with locally advanced or metastatic soft-tissue sarcoma: a meta-analysis and clinical practice guideline. Sarcoma 2000; 4: 103–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pappo AS, Shapiro DN, Crist WM, Maurer HM . Biology and therapy of pediatric rhabdomyosarcoma. J Clin Oncol 1995; 13: 2123–2139.

    Article  CAS  PubMed  Google Scholar 

  3. Ries L, Smith M, Gurney J, Linet M, Tamra T, Young J et al. Cancer Incidence and Survival Among Children and Adolescents: United States SEER Program 1975–1995, NIH Pub. No. 99-4649 1999: National Cancer Institute, SEER Program: Bethesda, MD.

    Google Scholar 

  4. Pratt C, Maurer H, Gieser P, Salzberg A, Rao B, Parham D et al. Treatment of unresectable or metastatic pediatric soft tissue sarcomas with surgery, irradiation, and chemotherapy: A Pediatric Oncology Group study. Med Pediatr Oncol 1998; 30: 201–209.

    Article  CAS  PubMed  Google Scholar 

  5. Goldsby R, Burke C, Nagarajan R, Zhou T, Chen Z, Marina N et al. Second solid malignancies among children, adolescents, and young adults diagnosed with malignant bone tumors after 1976: follow-up of a Children's Oncology Group cohort. Cancer 2008; 113: 2597–2604.

    Article  PubMed  Google Scholar 

  6. Miser JS, Goldsby RE, Chen Z, Krailo MD, Tarbell NJ, Link MP et al. Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: evaluation of increasing the dose intensity of chemotherapy—a report from the Children's Oncology Group. Pediatr Blood Cancer 2007; 49: 894–900.

    Article  PubMed  Google Scholar 

  7. Smith ER, Chiocca EA . Oncolytic viruses as novel anticancer agents: turning one scourge against another. Expert Opin Investig Drugs 2000; 9: 311–327.

    Article  CAS  PubMed  Google Scholar 

  8. Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99: 1768–1781.

    Article  CAS  PubMed  Google Scholar 

  9. Aghi M, Chou TC, Suling K, Breakefield XO, Chiocca EA . Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 1999; 59: 3861–3865.

    CAS  PubMed  Google Scholar 

  10. Currier MA, Gillespie RA, Sawtell NM, Mahller YY, Stroup G, Collins MH et al. Efficacy and safety of the oncolytic herpes simplex virus rRp450 alone and combined with cyclophosphamide. Mol Ther 2008; 16: 879–885.

    Article  CAS  PubMed  Google Scholar 

  11. Boucher Y, Jain RK . Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 1992; 52: 5110–5114.

    CAS  PubMed  Google Scholar 

  12. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156: 1363–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stohrer M, Boucher Y, Stangassinger M, Jain RK . Oncotic pressure in solid tumors is elevated. Cancer Res 2000; 60: 4251–4255.

    CAS  PubMed  Google Scholar 

  14. Duda DG . Antiangiogenesis and drug delivery to tumors: bench to bedside and back. Cancer Res 2006; 66: 3967–3970.

    Article  CAS  PubMed  Google Scholar 

  15. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK . Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64: 3731–3736.

    Article  CAS  PubMed  Google Scholar 

  16. Dickson PV, Hamner JB, Sims TL, Fraga CH, Ng CY, Rajasekeran S et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 2007; 13: 3942–3950.

    Article  CAS  PubMed  Google Scholar 

  17. Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 2006; 281: 951–961.

    Article  CAS  PubMed  Google Scholar 

  18. Reynolds P, Dmitriev I, Curiel D . Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Therapy 1999; 6: 1336–1339.

    Article  CAS  PubMed  Google Scholar 

  19. Schellingerhout D, Bogdanov Jr A, Marecos E, Spear M, Breakefield X, Weissleder R . Mapping the in vivo distribution of herpes simplex virions. Hum Gene Ther 1998; 9: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  20. Oyama M, Ohigashi T, Hoshi M, Nakashima J, Tachibana M, Murai M et al. Intravesical and intravenous therapy of human bladder cancer by the herpes vector G207. Hum Gene Ther 2000; 11: 1683–1693.

    Article  CAS  PubMed  Google Scholar 

  21. Cinatl Jr J, Cinatl J, Michaelis M, Kabickova H, Kotchetkov R, Vogel J-U et al. Potent oncolytic activity of multimutated herpes simplex virus G207 in combination with vincristine against human rhabdomyosarcoma. Cancer Res 2003; 63: 1508–1514.

    CAS  PubMed  Google Scholar 

  22. Fu X, Zhang X . Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res 2002; 62: 2306–2312.

    CAS  PubMed  Google Scholar 

  23. Wong R, Chan M-K, Yu Z, Kim T, Bhargava A, Stiles B et al. Effective intravenous therapy of murine pulmonary metastases with an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 2004; 10: 251–259.

    Article  CAS  PubMed  Google Scholar 

  24. Nakamori M, Fu X, Pettaway C, Zhang X . Potent antitumor activity after systemic delivery of a doubly fusogenic oncolytic herpes simplex virus against metastatic prostate cancer. Prostate 2004; 60: 53–60.

    Article  CAS  PubMed  Google Scholar 

  25. Delman KA, Bennett JJ, Zager JS, Burt BM, McAuliffe PF, Petrowsky H et al. Effects of preexisting immunity on the response to herpes simplex-based oncolytic viral therapy. Hum Gene Ther 2000; 11: 2465–2472.

    Article  CAS  PubMed  Google Scholar 

  26. Kemeny N, Brown K, Covey A, Kim T, Bhargava A, Brody L et al. Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver. Hum Gene Ther 2006; 17: 1214–1224.

    Article  CAS  PubMed  Google Scholar 

  27. Fong Y, Kim T, Bhargava A, Schwartz L, Brown K, Brody L et al. A herpes oncolytic virus can be delivered via the vasculature to produce biologic changes in human colorectal cancer. Mol Ther 2009; 17: 389–394.

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Sarkaria JN, Petell CA, Paraskevakou G, Zollman PJ, Schroeder M et al. Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme. Clin Cancer Res 2007; 13: 7155–7165.

    Article  CAS  PubMed  Google Scholar 

  29. Duerner LJ, Schwantes A, Schneider IC, Cichutek K, Buchholz CJ . Cell entry targeting restricts biodistribution of replication-competent retroviruses to tumour tissue. Gene Ther 2008; 15: 1500–1510.

    Article  CAS  PubMed  Google Scholar 

  30. Varghese S, Rabkin SD, Nielsen GP, MacGarvey U, Liu R, Martuza RL . Systemic therapy of spontaneous prostate cancer in transgenic mice with oncolytic herpes simplex viruses. Cancer Res 2007; 67: 9371–9379.

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5: 881–887.

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda K, Wakimoto H, Ichikawa T, Jhung S, Hochberg FH, Louis DN et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 2000; 74: 4765–4775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wakimoto H, Ikeda K, Abe T, Ichikawa T, Hochberg FH, Ezekowitz RA et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther 2002; 5: 275–282.

    Article  CAS  PubMed  Google Scholar 

  34. Kottke T, Diaz RM, Kaluza K, Pulido J, Galivo F, Wongthida P et al. Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer. Mol Ther 2008; 16: 1910–1918.

    Article  CAS  PubMed  Google Scholar 

  35. Power AT, Bell JC . Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer. Mol Ther 2007; 15: 660–665.

    Article  CAS  PubMed  Google Scholar 

  36. Kottke T, Galivo F, Wongthida P, Diaz RM, Thompson J, Jevremovic D et al. Treg depletion-enhanced IL-2 treatment facilitates therapy of established tumors using systemically delivered oncolytic virus. Mol Ther 2008; 16: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  37. Allen T, Cullis P . Drug delivery systems: entering the mainstream. Science 2004; 303: 1818–1822.

    Article  CAS  PubMed  Google Scholar 

  38. Gimenez-Cassina A, Lim F, Diaz-Nido J . Differentiation of a human neuroblastoma into neuron-like cells increases their susceptibility to transduction by herpesviral vectors. J Neurosci Res 2006; 84: 755–767.

    Article  CAS  PubMed  Google Scholar 

  39. Yu Z, Li S, Huang YY, Fong Y, Wong RJ . Calcium depletion enhances nectin-1 expression and herpes oncolytic therapy of squamous cell carcinoma. Cancer Gene Ther 2007; 14: 738–747.

    Article  CAS  PubMed  Google Scholar 

  40. Wildiers H, Guetens G, De Boeck G, Verbeken E, Landuyt B, Landuyt W et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. Br J Cancer 2003; 88: 1979–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benencia F, Courreges MC, Conejo-Garcia JR, Buckanovich RJ, Zhang L, Carroll RH et al. Oncolytic HSV exerts direct antiangiogenic activity in ovarian carcinoma. Hum Gene Ther 2005; 16: 765–778.

    Article  CAS  PubMed  Google Scholar 

  42. Bocci G, Man S, Green SK, Francia G, Ebos JM, du Manoir JM et al. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res 2004; 64: 6616–6625.

    Article  CAS  PubMed  Google Scholar 

  43. Sharp R, Recio J, Jhappan C, Otsuka T, Liu S, Yu W et al. Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nat Med 2002; 8: 1276–1280.

    Article  CAS  PubMed  Google Scholar 

  44. Tong R, Boucher Y, Kozin S, Winkler F, Hicklin D, Jain R . Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004; 64: 3731–3736.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel Demopoulos, Cindy Lambert, Steve Mayer and Cindy Klotz (Hematology/Oncology Pharmacy at Cincinnati Children's Hospital Medical Center) for providing bevacizumab, Dan Hinklin (ImClone Systems) for DC101, E Antonio Chiocca (Ohio State University) for providing rRp450, David Krisky and Bill Goins (University of Pittsburgh) for production and purification of rRp450, and Arturo Maldonado for help with biostatistical analyses. This work was supported by Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, teeoffagainstcancer.org, the Katie Linz Foundation, The Limb Preservation Foundation, an American Cancer Society Fellowship Award (FKE) and NIH grant R01-CA114004 (TPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T P Cripe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshun, F., Currier, M., Gillespie, R. et al. VEGF blockade decreases the tumor uptake of systemic oncolytic herpes virus but enhances therapeutic efficacy when given after virotherapy. Gene Ther 17, 922–929 (2010). https://doi.org/10.1038/gt.2010.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.82

Keywords

This article is cited by

Search

Quick links