Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Physiological and tissue-specific vectors for treatment of inherited diseases

Abstract

After more than 1500 gene therapy clinical trials in the past two decades, the overall conclusion is that for gene therapy (GT) to be successful, the vector systems must still be improved in terms of delivery, expression and safety. The recent development of more efficient and stable vector systems has created great expectations for the future of GT. Impressive results were obtained in three primary immunodeficiencies and other inherited diseases such as congenital blindness, adrenoleukodystrophy or junctional epidermolysis bullosa. However, the development of leukemia in five children included in the GT clinical trials for X-linked severe combined immunodeficiency and the silencing of the therapeutic gene in the chronic granulomatous disease clearly showed the importance of improving safety and efficiency. In this review, we focus on the main strategies available to achieve physiological or tissue-specific expression of therapeutic transgenes and discuss the importance of controlling transgene expression to improve safety. We propose that tissue-specific and/or physiological viral vectors offer the best balance between efficiency and safety and will be the tools of choice for future clinical trials in GT of inherited diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Aiuti A, Bachoud-Levi AC, Blesch A, Brenner MK, Cattaneo F, Chiocca EA et al. Progress and prospects: gene therapy clinical trials (part 2). Gene Therapy 2007; 14: 1555–1563.

    PubMed  Google Scholar 

  2. Herzog RW, Cao O, Srivastava A . Two decades of clinical gene therapy success is finally mounting. Discov Med 2010; 9: 105–111.

    PubMed  PubMed Central  Google Scholar 

  3. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    CAS  PubMed  Google Scholar 

  4. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    CAS  PubMed  Google Scholar 

  5. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  PubMed  Google Scholar 

  6. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    CAS  PubMed  Google Scholar 

  7. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–347.

    Article  CAS  PubMed  Google Scholar 

  8. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    CAS  PubMed  Google Scholar 

  9. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597–1605.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fischer A, Cavazzana-Calvo M . Gene therapy of inherited diseases. Lancet 2008; 371: 2044–2047.

    PubMed  Google Scholar 

  11. Howe SL, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    CAS  PubMed  Google Scholar 

  14. Puthenveetil G, Scholes J, Carbonell D, Qureshi N, Xia P, Zeng L et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 2004; 104: 3445–3453.

    CAS  PubMed  Google Scholar 

  15. Brown MP, Topham DJ, Sangster MY, Zhao J, Flynn KJ, Surman SL et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med 1998; 4: 1253–1260.

    CAS  PubMed  Google Scholar 

  16. Maas A, Hendriks RW . Role of Bruton's tyrosine kinase in B cell development. Dev Immunol 2001; 8: 171–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Toscano MG, Frecha C, Benabdellah K, Cobo M, Blundell M, Thrasher AJ et al. Hematopoietic-specific lentiviral vectors circumvent cellular toxicity due to ectopic expression of Wiskott–Aldrich syndrome protein. Hum Gene Ther 2008; 19: 179–197.

    CAS  PubMed  Google Scholar 

  18. Martin F, Toscano MG, Blundell M, Frecha C, Srivastava GK, Santamaria M et al. Lentiviral vectors transcriptionally targeted to hematopoietic cells by WASP gene proximal promoter sequences. Gene Therapy 2005; 12: 715–723.

    CAS  PubMed  Google Scholar 

  19. Dupre L, Trifari S, Follenzi A, Marangoni F, Lain de Lera T, Bernad A et al. Lentiviral vector-mediated gene transfer in T cells from Wiskott–Aldrich syndrome patients leads to functional correction. Mol Ther 2004; 10: 903–915.

    CAS  PubMed  Google Scholar 

  20. Zhao-Emonet JC, Marodon G, Pioche-Durieu C, Cosset FL, Klatzmann D . T cell-specific expression from Mo-MLV retroviral vectors containing a CD4mini-promoter/enhancer. J Gene Med 2000; 2: 416–425.

    CAS  PubMed  Google Scholar 

  21. Indraccolo S, Minuzzo S, Roccaforte F, Zamarchi R, Habeler W, Stievano L et al. Effects of CD2 locus control region sequences on gene expression by retroviral and lentiviral vectors. Blood 2001; 98: 3607–3617.

    CAS  PubMed  Google Scholar 

  22. Marodon G, Mouly E, Blair EJ, Frisen C, Lemoine FM, Klatzmann D . Specific transgene expression in human and mouse CD4+ cells using lentiviral vectors with regulatory sequences from the CD4 gene. Blood 2003; 101: 3416–3423.

    CAS  PubMed  Google Scholar 

  23. Adjali O, Marodon G, Steinberg M, Mongellaz C, Thomas-Vaslin V, Jacquet C et al. In vivo correction of ZAP-70 immunodeficiency by intrathymic gene transfer. J Clin Invest 2005; 115: 2287–2295.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grande A, Piovani B, Aiuti A, Ottolenghi S, Mavilio F, Ferrari G . Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood 1999; 93: 3276–3285.

    CAS  PubMed  Google Scholar 

  25. Moreau-Gaudry F, Xia P, Jiang G, Perelman NP, Bauer G, Ellis J et al. High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 2001; 98: 2664–2672.

    CAS  PubMed  Google Scholar 

  26. Richard E, Mendez M, Mazurier F, Morel C, Costet P, Xia P et al. Gene therapy of a mouse model of protoporphyria with a self-inactivating erythroid-specific lentiviral vector without preselection. Mol Ther 2001; 4: 331–338.

    CAS  PubMed  Google Scholar 

  27. Testa A, Lotti F, Cairns L, Grande A, Ottolenghi S, Ferrari G et al. Deletion of a negatively acting sequence in a chimeric GATA-1 enhancer-long terminal repeat greatly increases retrovirally mediated erythroid expression. J Biol Chem 2004; 279: 10523–10531.

    CAS  PubMed  Google Scholar 

  28. Zhu J, Kren BT, Park CW, Bilgim R, Wong PY, Steer CJ . Erythroid-specific expression of beta-globin by the sleeping beauty transposon for sickle cell disease. Biochemistry 2007; 46: 6844–6858.

    CAS  PubMed  Google Scholar 

  29. Cui Y, Golob J, Kelleher E, Ye Z, Pardoll D, Cheng L . Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood 2002; 99: 399–408.

    CAS  PubMed  Google Scholar 

  30. Sudowe S, Ludwig-Portugall I, Montermann E, Ross R, Reske-Kunz AB . Transcriptional targeting of dendritic cells in gene gun-mediated DNA immunization favors the induction of type 1 immune responses. Mol Ther 2003; 8: 567–575.

    CAS  PubMed  Google Scholar 

  31. Lopes L, Dewannieux M, Gileadi U, Bailey R, Ikeda Y, Whittaker C et al. Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J Virol 2008; 82: 86–95.

    CAS  PubMed  Google Scholar 

  32. Dresch C, Edelmann SL, Marconi P, Brocker T . Lentiviral-mediated transcriptional targeting of dendritic cells for induction of T cell tolerance in vivo. J Immunol 2008; 181: 4495–4506.

    CAS  PubMed  Google Scholar 

  33. Lutzko C, Senadheera D, Skelton D, Petersen D, Kohn DB . Lentivirus vectors incorporating the immunoglobulin heavy chain enhancer and matrix attachment regions provide position-independent expression in B lymphocytes. J Virol 2003; 77: 7341–7351.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Werner M, Kraunus J, Baum C, Brocker T . B-cell-specific transgene expression using a self-inactivating retroviral vector with human CD19 promoter and viral post-transcriptional regulatory element. Gene Therapy 2004; 11: 992–1000.

    CAS  PubMed  Google Scholar 

  35. Laurie KL, Blundell MP, Baxendale HE, Howe SJ, Sinclair J, Qasim W et al. Cell-specific and efficient expression in mouse and human B cells by a novel hybrid immunoglobulin promoter in a lentiviral vector. Gene Therapy 2007; 14: 1623–1631.

    CAS  PubMed  Google Scholar 

  36. Gough PJ, Raines EW . Gene therapy of apolipoprotein E-deficient mice using a novel macrophage-specific retroviral vector. Blood 2003; 101: 485–491.

    CAS  PubMed  Google Scholar 

  37. Lavenu-Bombled C, Izac B, Legrand F, Cambot M, Vigier A, Masse JM et al. Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector. Stem Cells 2007; 25: 1571–1577.

    CAS  PubMed  Google Scholar 

  38. Le M, Okuyama T, Cai SR, Kennedy SC, Bowling WM, Flye MW et al. Therapeutic levels of functional human factor X in rats after retroviral-mediated hepatic gene therapy. Blood 1997; 89: 1254–1259.

    CAS  PubMed  Google Scholar 

  39. Miao CH, Ohashi K, Patijn GA, Meuse L, Ye X, Thompson AR et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol Ther 2000; 1: 522–532.

    CAS  PubMed  Google Scholar 

  40. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L . Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 2002; 13: 243–260.

    CAS  PubMed  Google Scholar 

  41. Mount JD, Herzog RW, Tillson DM, Goodman SA, Robinson N, McCleland ML et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99: 2670–2676.

    CAS  PubMed  Google Scholar 

  42. Yasuda M, Domaradzki ME, Armentano D, Cheng SH, Bishop DF, Desnick RJ . Acute intermittent porphyria: vector optimization for gene therapy. J Gene Med 2007; 9: 806–811.

    CAS  PubMed  Google Scholar 

  43. Giering JC, Grimm D, Storm TA, Kay MA . Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 2008; 16: 1630–1636.

    CAS  PubMed  Google Scholar 

  44. Cunningham SC, Spinoulas A, Carpenter KH, Wilcken B, Kuchel PW, Alexander IE . AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spf(ash) mice. Mol Ther 2009; 17: 1340–1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tessitore A, Faella A, O’Malley T, Cotugno G, Doria M, Kunieda T et al. Biochemical, pathological, and skeletal improvement of mucopolysaccharidosis VI after gene transfer to liver but not to muscle. Mol Ther 2008; 16: 30–37.

    CAS  PubMed  Google Scholar 

  46. Jacobs F, Snoeys J, Feng Y, Van Craeyveld E, Lievens J, Armentano D et al. Direct comparison of hepatocyte-specific expression cassettes following adenoviral and nonviral hydrodynamic gene transfer. Gene Therapy 2008; 15: 594–603.

    CAS  PubMed  Google Scholar 

  47. Vaessen SF, Veldman RJ, Comijn EM, Snapper J, Sierts JA, van den Oever K et al. AAV gene therapy as a means to increase apolipoprotein (Apo) A-I and high-density lipoprotein-cholesterol levels: correction of murine ApoA-I deficiency. J Gene Med 2009; 11: 697–707.

    CAS  PubMed  Google Scholar 

  48. Crettaz J, Otano I, Ochoa L, Benito A, Paneda A, Aurrekoetxea I et al. Treatment of chronic viral hepatitis in woodchucks by prolonged intrahepatic expression of interleukin-12. J Virol 2009; 83: 2663–2674.

    CAS  PubMed  Google Scholar 

  49. Hauser MA, Robinson A, Hartigan-O’Connor D, Williams-Gregory DA, Buskin JN, Apone S et al. Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol Ther 2000; 2: 16–25.

    CAS  PubMed  Google Scholar 

  50. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu YL, Mingozzi F, Rodriguez-Colon SM, Joseph S, Dobrzynski E, Suzuki T et al. Therapeutic levels of factor IX expression using a muscle-specific promoter and adeno-associated virus serotype 1 vector. Hum Gene Ther 2004; 15: 783–792.

    CAS  PubMed  Google Scholar 

  52. Sun B, Zhang H, Franco LM, Brown T, Bird A, Schneider A et al. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 2005; 11: 889–898.

    CAS  PubMed  Google Scholar 

  53. Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 2007; 15: 320–329.

    CAS  PubMed  Google Scholar 

  54. Sun B, Young SP, Li P, Di C, Brown T, Salva MZ et al. Correction of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene therapy. Mol Ther 2008; 16: 1366–1371.

    CAS  PubMed  Google Scholar 

  55. Richard E, Douillard-Guilloux G, Batista L, Caillaud C . Correction of glycogenosis type 2 by muscle-specific lentiviral vector. In Vitro Cell Dev Biol Anim 2008; 44: 397–406.

    CAS  PubMed  Google Scholar 

  56. Gallo P, Grimaldi S, Latronico MV, Bonci D, Pagliuca A, Ausoni S et al. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells. Gene Therapy 2008; 15: 161–170.

    CAS  PubMed  Google Scholar 

  57. Jaggar RT, Chan HY, Harris AL, Bicknell R . Endothelial cell-specific expression of tumor necrosis factor-alpha from the KDR or E-selectin promoters following retroviral delivery. Hum Gene Ther 1997; 8: 2239–2247.

    CAS  PubMed  Google Scholar 

  58. Jager U, Zhao Y, Porter CD . Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 1999; 73: 9702–9709.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Modlich U, Pugh CW, Bicknell R . Increasing endothelial cell specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene Therapy 2000; 7: 896–902.

    CAS  PubMed  Google Scholar 

  60. Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV IV et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001; 19: 838–842.

    CAS  PubMed  Google Scholar 

  61. Nicklin SA, Reynolds PN, Brosnan MJ, White SJ, Curiel DT, Dominiczak AF et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 2001; 38: 65–70.

    CAS  PubMed  Google Scholar 

  62. Velasco B, Ramirez JR, Relloso M, Li C, Kumar S, Lopez-Bote JP et al. Vascular gene transfer driven by endoglin and ICAM-2 endothelial-specific promoters. Gene Therapy 2001; 8: 897–904.

    CAS  PubMed  Google Scholar 

  63. Dai C, McAninch RE, Sutton RE . Identification of synthetic endothelial cell-specific promoters by use of a high-throughput screen. J Virol 2004; 78: 6209–6221.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu L, Sanz S, Heggestad AD, Antharam V, Notterpek L, Fletcher BS . Endothelial targeting of the Sleeping Beauty transposon within lung. Mol Ther 2004; 10: 97–105.

    CAS  PubMed  Google Scholar 

  65. Dematteo RP, McClane SJ, Fisher K, Yeh H, Chu G, Burke C et al. Engineering tissue-specific expression of a recombinant adenovirus: selective transgene transcription in the pancreas using the amylase promoter. J Surg Res 1997; 72: 155–161.

    CAS  PubMed  Google Scholar 

  66. Londrigan SL, Brady JL, Sutherland RM, Hawthorne WJ, Thomas HE, Jhala G et al. Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets. Xenotransplantation 2007; 14: 119–125.

    PubMed  Google Scholar 

  67. Bulat N, Widmann C . Generation of a tightly regulated all-cis beta cell-specific tetracycline-inducible vector. Biotechniques 2008; 45: 411 414, 416 passim.

    CAS  PubMed  Google Scholar 

  68. Andersen JK, Frim DM, Isacson O, Breakefield XO . Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific enolase promoter. Cell Mol Neurobiol 1993; 13: 503–515.

    CAS  PubMed  Google Scholar 

  69. Navarro V, Millecamps S, Geoffroy MC, Robert JJ, Valin A, Mallet J et al. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Therapy 1999; 6: 1884–1892.

    CAS  PubMed  Google Scholar 

  70. Ralph GS, Bienemann A, Harding TC, Hopton M, Henley J, Uney JB . Targeting of tetracycline-regulatable transgene expression specifically to neuronal and glial cell populations using adenoviral vectors. Neuroreport 2000; 11: 2051–2055.

    CAS  PubMed  Google Scholar 

  71. Kugler S, Kilic E, Bahr M . Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Therapy 2003; 10: 337–347.

    CAS  PubMed  Google Scholar 

  72. Glover CP, Bienemann AS, Hopton M, Harding TC, Kew JN, Uney JB . Long-term transgene expression can be mediated in the brain by adenoviral vectors when powerful neuron-specific promoters are used. J Gene Med 2003; 5: 554–559.

    CAS  PubMed  Google Scholar 

  73. Liu BH, Wang X, Ma YX, Wang S . CMV enhancer/human PDGF-beta promoter for neuron-specific transgene expression. Gene Therapy 2004; 11: 52–60.

    PubMed  Google Scholar 

  74. Hioki H, Kameda H, Nakamura H, Okunomiya T, Ohira K, Nakamura K et al. Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Therapy 2007; 14: 872–882.

    CAS  PubMed  Google Scholar 

  75. Rasmussen M, Kong L, Zhang GR, Liu M, Wang X, Szabo G et al. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter. Brain Res 2007; 1144: 19–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Cao H, Zhang GR, Wang X, Kong L, Geller AI . Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles. BMC Neurosci 2008; 9: 37.

    PubMed  PubMed Central  Google Scholar 

  77. Li Q, Timmers AM, Guy J, Pang J, Hauswirth WW . Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Res 2008; 48: 332–338.

    CAS  PubMed  Google Scholar 

  78. Toietta G, Koehler DR, Finegold MJ, Lee B, Hu J, Beaudet AL . Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol Ther 2003; 7: 649–658.

    CAS  PubMed  Google Scholar 

  79. Di Nunzio F, Maruggi G, Ferrari S, Di Iorio E, Poletti V, Garcia M et al. Correction of laminin-5 deficiency in human epidermal stem cells by transcriptionally targeted lentiviral vectors. Mol Ther 2008; 16: 1977–1985.

    CAS  PubMed  Google Scholar 

  80. Endo M, Zoltick PW, Peranteau WH, Radu A, Muvarak N, Ito M et al. Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther 2008; 16: 131–137.

    CAS  PubMed  Google Scholar 

  81. LoDuca PA, Hoffman BE, Herzog RW . Hepatic gene transfer as a means of tolerance induction to transgene products. Curr Gene Ther 2009; 9: 104–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest 2003; 111: 1347–1356.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L et al. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 2004; 103: 3700–3709.

    CAS  PubMed  Google Scholar 

  84. Niemeyer GP, Herzog RW, Mount J, Arruda VR, Tillson DM, Hathcock J et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 2009; 113: 797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963–2972.

    CAS  PubMed  Google Scholar 

  86. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther 2006; 14: 452–455.

    CAS  PubMed  Google Scholar 

  87. Keogh MC, Chen D, Schmitt JF, Dennehy U, Kakkar VV, Lemoine NR . Design of a muscle cell-specific expression vector utilising human vascular smooth muscle alpha-actin regulatory elements. Gene Therapy 1999; 6: 616–628.

    CAS  PubMed  Google Scholar 

  88. Trollet C, Athanasopoulos T, Popplewell L, Malerba A, Dickson G . Gene therapy for muscular dystrophy: current progress and future prospects. Expert Opin Biol Ther 2009; 9: 849–866.

    CAS  PubMed  Google Scholar 

  89. Nikol S . Gene therapy of cardiovascular disease. Curr Opin Mol Ther 2008; 10: 479–492.

    CAS  PubMed  Google Scholar 

  90. Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 2009; 17: 1109–1115.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dong Z, Nor JE . Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev 2009; 61: 542–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bazan-Peregrino M, Seymour LW, Harris AL . Gene therapy targeting to tumor endothelium. Cancer Gene Ther 2007; 14: 117–127.

    CAS  PubMed  Google Scholar 

  93. Reynolds PN, Nicklin SA, Kaliberova L, Boatman BG, Grizzle WE, Balyasnikova IV et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 2001; 19: 838–842.

    CAS  PubMed  Google Scholar 

  94. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 2006; 12: 1397–1402.

    CAS  PubMed  Google Scholar 

  95. Mohammad-Panah R, Demolombe S, Riochet D, Leblais V, Loussouarn G, Pollard H et al. Hyperexpression of recombinant CFTR in heterologous cells alters its physiological properties. Am J Physiol 1998; 274: C310–C318.

    CAS  PubMed  Google Scholar 

  96. Koehler DR, Hannam V, Belcastro R, Steer B, Wen Y, Post M et al. Targeting transgene expression for cystic fibrosis gene therapy. Mol Ther 2001; 4: 58–65.

    CAS  PubMed  Google Scholar 

  97. Lisowski L, Sadelain M . Current status of globin gene therapy for the treatment of beta-thalassaemia. Br J Haematol 2008; 141: 335–345.

    CAS  PubMed  Google Scholar 

  98. Bender MA, Gelinas RE, Miller AD . A majority of mice show long-term expression of a human beta-globin gene after retrovirus transfer into hematopoietic stem cells. Mol Cell Biol 1989; 9: 1426–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Plavec I, Papayannopoulou T, Maury C, Meyer F . A human beta-globin gene fused to the human beta-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. Blood 1993; 81: 1384–1392.

    CAS  PubMed  Google Scholar 

  100. Leboulch P, Huang GM, Humphries RK, Oh YH, Eaves CJ, Tuan DY et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J 1994; 13: 3065–3076.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sadelain M, Wang CH, Antoniou M, Grosveld F, Mulligan RC . Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci USA 1995; 92: 6728–6732.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Raftopoulos H, Ward M, Leboulch P, Bank A . Long-term transfer and expression of the human beta-globin gene in a mouse transplant model. Blood 1997; 90: 3414–3422.

    CAS  PubMed  Google Scholar 

  103. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000; 406: 82–86.

    CAS  PubMed  Google Scholar 

  104. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001; 294: 2368–2371.

    CAS  PubMed  Google Scholar 

  105. Imren S, Fabry ME, Westerman KA, Pawliuk R, Tang P, Rosten PM et al. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest 2004; 114: 953–962.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hanawa H, Yamamoto M, Zhao H, Shimada T, Persons DA . Optimized lentiviral vector design improves titer and transgene expression of vectors containing the chicken beta-globin locus HS4 insulator element. Mol Ther 2009; 17: 667–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Perumbeti A, Higashimoto T, Urbinati F, Franco R, Meiselman HJ, Witte D et al. A novel human gamma-globin gene vector for genetic correction of sickle cell anemia in a humanized sickle mouse model: critical determinants for successful correction. Blood 2009; 114: 1174–1185.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Marx J . Cell biology: podosomes and invadopodia help mobile cells step lively. Science 2006; 312: 1868–1869.

    CAS  PubMed  Google Scholar 

  109. Yamaguchi H, Condeelis J . Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 2006; 1773: 642–652.

    PubMed  PubMed Central  Google Scholar 

  110. Leuci V, Gammaitoni L, Capellero S, Sangiolo D, Mesuraca M, Bond HM et al. Efficient transcriptional targeting of human hematopoietic stem cells and blood cell lineages by lentiviral vectors containing the regulatory element of the Wiskott–Aldrich syndrome gene. Stem Cells 2009; 27: 2815–2823.

    CAS  PubMed  Google Scholar 

  111. Charrier S, Stockholm D, Seye K, Opolon P, Taveau M, Gross DA et al. A lentiviral vector encoding the human Wiskott–Aldrich syndrome protein corrects immune and cytoskeletal defects in WASP knockout mice. Gene Therapy 2005; 12: 597–606.

    CAS  PubMed  Google Scholar 

  112. Charrier S, Dupre L, Scaramuzza S, Jeanson-Leh L, Blundell MP, Danos O et al. Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients. Gene Therapy 2007; 14: 415–428.

    CAS  PubMed  Google Scholar 

  113. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Frecha C, Toscano MG, Costa C, Saez-Lara MJ, Cosset FL, Verhoeyen E et al. Improved lentiviral vectors for Wiskott–Aldrich syndrome gene therapy mimic endogenous expression profiles throughout haematopoiesis. Gene Therapy 2008; 15: 930–941.

    CAS  PubMed  Google Scholar 

  115. Hoshiya H, Kazuki Y, Abe S, Takiguchi M, Kajitani N, Watanabe Y et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 2009; 17: 309–317.

    CAS  PubMed  Google Scholar 

  116. Hibbitt OC, McNeil E, Lufino MM, Seymour L, Channon K, Wade-Martins R . Long-term physiologically regulated expression of the low-density lipoprotein receptor in vivo using genomic DNA Mini-gene constructs. Mol Ther 2010; 18: 317–326.

    CAS  PubMed  Google Scholar 

  117. Yamada H, Li YC, Nishikawa M, Oshimura M, Inoue T . Introduction of a CD40L genomic fragment via a human artificial chromosome vector permits cell-type-specific gene expression and induces immunoglobulin secretion. J Hum Genet 2008; 53: 447–453.

    CAS  PubMed  Google Scholar 

  118. Romero Z, Cobo M, Unciti J, Muñoz P, Martin F, Molina I . Development of lentiviral vectors development for gene therapy of X-linked hyper IgM syndrome (XHIGM-1). Hum Gene Ther 2009; 20: 1.

    Google Scholar 

  119. Hanawa H, Persons DA, Nienhuis AW . High-level erythroid lineage-directed gene expression using globin gene regulatory elements after lentiviral vector-mediated gene transfer into primitive human and murine hematopoietic cells. Hum Gene Ther 2002; 13: 2007–2016.

    CAS  PubMed  Google Scholar 

  120. Nemeth MJ, Lowrey CH . An erythroid-specific chromatin opening element increases beta-globin gene expression from integrated retroviral gene transfer vectors. Gene Ther Mol Biol 2004; 8: 475–486.

    PubMed  PubMed Central  Google Scholar 

  121. Wilcox DA, Olsen JC, Ishizawa L, Griffith M, White II GC . Integrin alphaIIb promoter-targeted expression of gene products in megakaryocytes derived from retrovirus-transduced human hematopoietic cells. Proc Natl Acad Sci USA 1999; 96: 9654–9659.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Therapy 2007; 14: 292–303.

    CAS  PubMed  Google Scholar 

  123. Kim SS, Garg H, Joshi A, Manjunath N . Strategies for targeted nonviral delivery of siRNA in vivo. Trends Mol Med 2009; 15: 491–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Marquez RT, McCaffrey AP . Advances in microRNA: implications for gene therapists. Hum Gene Ther 2008; 19: 27–38.

    CAS  PubMed  Google Scholar 

  125. Kelly EJ, Russell SJ . MicroRNAs and the regulation of vector tropism. Mol Ther 2009; 17: 409–416.

    CAS  PubMed  Google Scholar 

  126. Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L . Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 2006; 12: 585–591.

    CAS  PubMed  Google Scholar 

  127. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 2007; 110: 4144–4152.

    CAS  PubMed  Google Scholar 

  128. Papapetrou EP, Kovalovsky D, Beloeil L, Sant’angelo D, Sadelain M . Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras. J Clin Invest 2009; 119: 157–168.

    CAS  PubMed  Google Scholar 

  129. Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo MG . In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 2009; 114: 5152–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Van Ommen GJ, van Deutekom J, Aartsma-Rus A . The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 2008; 10: 140–149.

    CAS  PubMed  Google Scholar 

  131. Denti MA, Rosa A, D’Antona G, Sthandier O, De Angelis FG, Nicoletti C et al. Body-wide gene therapy of duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci USA 2006; 103: 3758–3763.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C . Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 2009; 8: 918–928.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677–2686.

    CAS  PubMed  Google Scholar 

  134. Cathomen T, Joung JK . Zinc-finger nucleases: the next generation emerges. Mol Ther 2008; 16: 1200–1207.

    CAS  PubMed  Google Scholar 

  135. Galetto R, Duchateau P, Paques F . Targeted approaches for gene therapy and the emergence of engineered meganucleases. Expert Opin Biol Ther 2009; 9: 1289–1303.

    CAS  PubMed  Google Scholar 

  136. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–1306.

    CAS  PubMed  Google Scholar 

  137. Lee HJ, Kim E, Kim JS . Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 2010; 20: 81–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25: 778–785.

    CAS  PubMed  Google Scholar 

  139. Pruett-Miller SM, Reading DW, Porter SN, Porteus MH . Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 2009; 5: e1000376.

    PubMed  PubMed Central  Google Scholar 

  140. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Evans-Galea MV, Wielgosz MM, Hanawa H, Srivastava DK, Nienhuis AW . Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 2007; 15: 801–809.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant no. PS09/00340 (to FM) and by a grant from Fundación Martín Escudero (to MGT). We thank Siobhán Christina Pantoll for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Martin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toscano, M., Romero, Z., Muñoz, P. et al. Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Ther 18, 117–127 (2011). https://doi.org/10.1038/gt.2010.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.138

Keywords

This article is cited by

Search

Quick links