Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Skeletal muscle cells: from local inflammatory response to active immunity

Abstract

The skeletal muscles are the major living component of the human body. They are constituted by stable cells, the myofibres, and by adult multipotent stem cells, the satellite cells, which can multiply to regenerate and repair the damaged tissues. Injections of DNA in muscle cells have been used to produce recombinant proteins with opposite goals: somatic reparation of genetic defects, which needs to elicit no inflammatory or immune response, and DNA vaccination, which needs a robust immune response. Because of possible therapeutical interventions, a growing body of information is being produced dealing with every aspect of the myofibres during inflammatory and autoimmune responses: skeletal muscle–antigen presenting cell (APC) interaction and intrinsic APC capabilities of myoblasts and myocytes, the response to released cytokines and their endogenous production, the regulation of Toll-like receptors and major histocompatibility complex expression. According to these data, the muscle tissue is now emerging no longer as a passive bystander, but more as an active player that, when correctly manipulated, can drive tolerance or immunization to these de novo produced proteins. In the present review, we summarize the recent developments on the control of muscle immune function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wiendl H, Hohlfeld R, Kieseier BC . Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends Immunol 2005; 26: 373–380.

    Article  CAS  PubMed  Google Scholar 

  2. Bischoff R, Franzini-Armstrong C . Satellite and stem cells in muscle regeneration. In: Engel A and Franzini-Armstrong C (eds) Myology. McGraw-Hill: New York, 2004 pp 66–86.

    Google Scholar 

  3. Miyazaki S, Miyazaki JI . In vivo DNA electrotransfer into muscle. Develop Growth Differ 2008; 50: 1–5.

    Article  Google Scholar 

  4. Wolff JA, Budker V . The mechanism of naked DNA uptake and expression. Adv Genet 2005; 54: 3–20.

    CAS  PubMed  Google Scholar 

  5. Wolff JA, Dowty ME, Jiao S, Repetto G, Berg RK, Ludtke JJ et al. Expression of naked plasmids by cultured myotubes and entry of plasmids into T tubules and caveolae of mammalian skeletal muscle. J Cell Sci 1992; 103: 1249–1259.

    Article  CAS  PubMed  Google Scholar 

  6. Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F . In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61: 527–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Latta-Mahieu M, Rolland M, Caillet C, Wang M, Kennel P, Mahfouz I et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum Gene Ther 2002; 13: 1611–1620.

    Article  CAS  PubMed  Google Scholar 

  8. Lu S . Immunogenicity of DNA vaccines in humans: it takes two to tango. Hum Vaccin 2008; 4: 449–452.

    Article  CAS  PubMed  Google Scholar 

  9. Goodsell A, Zhou F, Gupta S, Singh M, Malyala P, Kazzaz J et al. Beta7-integrin-independent enhancement of mucosal and systemic anti-HIV antibody responses following combined mucosal and systemic gene delivery. Immunology 2008; 123: 378–389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu MA . Gene-based vaccines: recent developments. Curr Opin Mol Ther 2010; 12: 86–93.

    CAS  PubMed  Google Scholar 

  11. Selby M, Goldbeck C, Pertile T, Walsh R, Ulmer J . Enhancement of DNA vaccine potency by electroporation in vivo. J Biotechnol 2000; 29: 147–152.

    Article  Google Scholar 

  12. Gramzinski RA, Millan CL, Obaldia N, Hoffman SL, Davis HL . Immune response to a hepatitis B DNA vaccine in Aotus monkeys: a comparison of vaccine formulation, route, and method of administration. Mol Med 1998; 4: 109–118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tollefsen S, Tjelle T, Schneider J, Harboe M, Wiker H, Hewinson G et al. Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation. Vaccine 2002; 10: 3370–3378.

    Article  Google Scholar 

  14. Durieux AC, Bonnefoy R, Busso T, Freyssenet D . In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage. J Gene Med 2004; 6: 809–816.

    Article  CAS  PubMed  Google Scholar 

  15. Grønevik E, Mathiesen I, Lømo T . Early events of electroporation-mediated intramuscular DNA vaccination potentiate Th1-directed immune responses. J Gene Med 2005; 7: 1246–1254.

    Article  CAS  PubMed  Google Scholar 

  16. Frost RA, Lang CH . Regulation of muscle growth by pathogen-associated molecules. J Anim Sci 2008; 86 (Suppl): E84–E93.

    Article  CAS  PubMed  Google Scholar 

  17. Ulevitch RJ . Therapeutics targeting the innate immune system. Nat Rev Immunol 2004; 4: 512–520.

    Article  CAS  PubMed  Google Scholar 

  18. Takeda K . Evolution and integration of innate immune recognition systems: the toll-like receptors. J Endotoxin Res 2005; 11: 51–55.

    Article  CAS  PubMed  Google Scholar 

  19. Hemmi H, Akira S . TLR signalling and the function of dendritic cells. Chem Immunol Allergy 2005; 86: 120–135.

    Article  CAS  PubMed  Google Scholar 

  20. Zarember KA, Godowski PJ . Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002; 168: 554–561.

    Article  CAS  PubMed  Google Scholar 

  21. Gallucci S, Provenzano C, Mazzarelli P, Scuderi F, Bartoccioni E . Myoblasts produce IL-6 in response to inflammatory stimuli. Int Immunol 1998; 10: 267–273.

    Article  CAS  PubMed  Google Scholar 

  22. Frost RA, Nystrom GJ, Lang CH . Lipopolysaccharide and proinflammatory cytokines stimulate interleukin-6 expression in C2C12 myoblasts: role of the Jun NH2-terminal kinase. Am J Physiol Regul Integr Comp Physiol 2003; 285: R1153–R1164.

    Article  CAS  PubMed  Google Scholar 

  23. Schreiner B, Voss J, Wischhusen J, Dombrowski Y, Steinle A, Lochmüller H et al. Expression of toll-like receptors by human muscle cells in vitro and in vivo: TLR3 is highly expressed in inflammatory and HIV myopathies, mediates IL-8 release and up-regulation of NKG2D-ligands. FASEB J 2006; 20: 118–120.

    Article  CAS  PubMed  Google Scholar 

  24. Frost RA, Nystrom GJ, Lang CH . Multiple Toll-like receptor ligands induce an IL-6 transcriptional response in skeletal myocytes. Am J Physiol Regul Integr Comp Physiol 2006; 290: R773–R784.

    Article  CAS  PubMed  Google Scholar 

  25. Akira S, Takeda K . Toll-like receptor signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410: 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  27. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  PubMed  Google Scholar 

  28. Boyd JH, Divangahi M, Yahiaoui L, Gvozdic D, Qureshi S, Petrof BJ . Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-kappaB and calcineurin. Infect Immun 2006; 74: 6829–6838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Verthelyi D . Adjuvant properties of CpG oligonucleotides in primates. Methods Mol Med 2006; 127: 139–158.

    CAS  PubMed  Google Scholar 

  30. Krieg AM . CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709–760.

    Article  CAS  PubMed  Google Scholar 

  31. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC . Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 1998; 161: 3042–3049.

    CAS  PubMed  Google Scholar 

  32. Gurunathan S, Wu CY, Freidag BL, Seder RA . DNA vaccines: a key for inducing long-term cellular immunity. Curr Opin Immunol 2000; 12: 442–447.

    Article  CAS  PubMed  Google Scholar 

  33. Chen YS, Hsiao YS, Lin HH, Liu Y, Chen YL . CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Infect Immun 2006; 74: 1699–1705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE . Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest 1996; 98: 1119–1129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Klinman DM, Yamshchikov G, Ishigatsubo Y . Contribution of CpG motifs to the immuno-genicity of DNA vaccines. J Immunol 1997; 158: 3635–3639.

    CAS  PubMed  Google Scholar 

  36. Pedersen BK, Akerström TC, Nielsen AR, Fisher CP . Role of myokines in exercise and metabolism. J Appl Physiol 2007; 103: 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen BK, Febbraio MA . Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88: 1379–1406.

    Article  CAS  PubMed  Google Scholar 

  38. Figarella-Branger D, Civatte M, Bartoli C, Pellissier JF . Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 2003; 28: 659–682.

    Article  CAS  PubMed  Google Scholar 

  39. Bartoccioni E, Michaelis D, Hohlfeld R . Constitutive and cytokine-induced production of interleukin-6 by human myoblasts. Immunol Lett 1994; 42: 135–138.

    Article  CAS  PubMed  Google Scholar 

  40. De Rossi M, Bernasconi P, Baggi F, de Waal Malefyt R, Mantegazza R . Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int Immunol 2000; 12: 1329–1335.

    Article  CAS  PubMed  Google Scholar 

  41. Sugiura T, Harigai M, Kawaguchi Y, Takagi K, Fukasawa C, Ohsako-Higami S et al. Increased IL-15 production of muscle cells in polymyositis and dermatomyositis. Int Immunol 2002; 14: 917–924.

    Article  CAS  PubMed  Google Scholar 

  42. Nagaraju K, Raben N, Merritt G, Loeffler L, Kirk K, Plotz P . A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli. Clin Exp Immunol 1998; 113: 407–414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Volpes R, van den Oord JJ, Desmet VJ . Immunohistochemical study of adhesion molecules in liver inflammation. Hepatology 1990; 12: 59–65.

    Article  CAS  PubMed  Google Scholar 

  44. Bartoccioni E, Gallucci S, Scuderi F, Ricci E, Servidei S, Broccolini A et al. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clin Exp Immunol 1994; 95: 166–172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tews DS, Goebel HH . Expression of cell adhesion molecules in inflammatory myopathies. J Neuroimmunol 1995; 59: 185–194.

    Article  CAS  PubMed  Google Scholar 

  46. Malorni W, Iosi F, Zarcone D, Grossi CE, Arancia G . Role of adhesion molecules in the mechanism of non-MHC (major histocompatibility complex) restricted cell-mediated cytotoxicity. Scanning Microsc 1993; 7: 323–331.

    CAS  PubMed  Google Scholar 

  47. Rothlein R, Mainolfi EA, Czajkowski M, Marlin SD . A form of circulating ICAM-1 in human serum. J Immunol 1991; 147: 3788–3793.

    CAS  PubMed  Google Scholar 

  48. Marino M, Scuderi F, Mazzarelli P, Mannella F, Provenzano C, Bartoccioni E . Constitutive and cytokine-induced expression of MHC and intercellular adhesion molecule-1 (ICAM-1) on human myoblasts. J Neuroimmunol 2001; 116: 94–101.

    Article  CAS  PubMed  Google Scholar 

  49. Figarella-Branger D, Schleinitz N, Boutière-Albanèse B, Camoin L, Bardin N, Guis S et al. Platelet-endothelial cell adhesion molecule-1 and CD146: soluble levels and in situ expression of cellular adhesion molecules implicated in the cohesion of endothelial cells in idiopathic inflammatory myopathies. J Rheumatol 2006; 33: 1623–1630.

    CAS  PubMed  Google Scholar 

  50. Meyer DM, Dustin ML, Carron CP . Characterization of intercellular adhesion molecule-1 ectodomain (sICAM-1) as an inhibitor of lymphocyte function-associated molecule-1 interaction with ICAM-1. J Immunol 1995; 155: 3578–3584.

    CAS  PubMed  Google Scholar 

  51. Marino M, Scuderi F, Mannella F, Bartoccioni E . TGF-beta 1 and IL-10 modulate IL-1 beta-induced membrane and soluble ICAM-1 in human myoblasts. J Neuroimmunol 2003; 134: 151–157.

    Article  CAS  PubMed  Google Scholar 

  52. Remick DG . Interleukin-8. Crit Care Med 2005; 33: S466–S467.

    Article  PubMed  Google Scholar 

  53. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C . IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 2003; 24: 25–29.

    Article  CAS  PubMed  Google Scholar 

  54. Bartoccioni E, Scuderi F, Marino M, Provenzano C . IL-6, monocyte infiltration and parenchymal cells. Trends Immunol 2003; 24: 299–300.

    Article  CAS  PubMed  Google Scholar 

  55. Marino M, Scuderi F, Provenzano C, Scheller J, Rose-John S, Bartoccioni E . IL-6 regulates MCP-1, ICAM-1 and IL-6 expression in human myoblasts. J Neuroimmunol 2008; 196: 41–48.

    Article  CAS  PubMed  Google Scholar 

  56. Chalaris A, Rabe B, Paliga K, Lange H, Laskay T, Fielding CA et al. Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 2007; 110: 1748–1755.

    Article  CAS  PubMed  Google Scholar 

  57. Scuderi F, Mannella F, Marino M, Provenzano C, Bartoccioni E . IL-6-deficient mice show impaired inflammatory response in a model of myosin-induced experimental myositis. J Neuroimmunol 2006; 176: 9–15.

    Article  CAS  PubMed  Google Scholar 

  58. Sugiura T, Kawaguchi Y, Harigai M, Takagi K, Ohta S, Fukasawa C et al. Increased CD40 expression on muscle cells of polymyositis and dermatomyositis: role of CD40-CD40 ligand interaction in IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 production. J Immunol 2000; 164: 6593–6600.

    Article  CAS  PubMed  Google Scholar 

  59. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N et al. IL-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14: 705–714.

    Article  CAS  PubMed  Google Scholar 

  60. Jostock T, Müllberg J, Özbek S, Atreya R, Blinn G, Voltz N et al. Soluble gp130 is the natural inhibitor of soluble IL-6R transsignaling responses. Eur J Biochem 2003; 268: 160–167.

    Article  Google Scholar 

  61. Rabe B, Chalaris A, May U, Waetzig GH, Seegert D, Williams AS et al. Transgenic blockade of interleukin 6 transsignaling abrogates inflammation. Blood 2008; 111: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  62. Nowell MA, Williams AS, Carty SA, Scheller J, Hayes AJ, Jones GW et al. Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J Immunol 2009; 182: 613–622.

    Article  CAS  PubMed  Google Scholar 

  63. Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M, Nakano S et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric castleman disease. Blood 2005; 106: 2627–2632.

    Article  CAS  PubMed  Google Scholar 

  64. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 2004; 21: 491–501.

    Article  CAS  PubMed  Google Scholar 

  65. Mazzarelli P, Scuderi F, Mistretta G, Provenzano C, Bartoccioni E . Effect of transforming growth factor-beta1 on interleukin-6 secretion in human myoblasts. J Neuroimmunol 1998; 87: 185–188.

    Article  CAS  PubMed  Google Scholar 

  66. Araki A, Hazama S, Yoshimura K, Yoshino S, Iizuka N, Oka M . Tumor secreting high levels of IL-15 induces specific immunity to low immunogenic colon adenocarcinoma via CD8+ T cells. Int J Mol Med 2004; 14: 571–576.

    CAS  PubMed  Google Scholar 

  67. Umemura M, Nishimura H, Saito K, Yajima T, Matsuzaki G, Mizuno S et al. Interleukin-15 as an immune adjuvant to increase the efficacy of Mycobacterium bovis bacillus calmette-guérin vaccination. Infect Immun 2003; 71: 6045–6048.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Li W, Li S, Hu Y, Tang B, Cui L, He W . Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting. Vaccine 2008; 26: 3282–3290.

    Article  CAS  PubMed  Google Scholar 

  69. Chong SY, Egan MA, Kutzler MA, Megati S, Masood A, Roopchard V et al. Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques. Vaccine 2007; 25: 4967–4982.

    Article  CAS  PubMed  Google Scholar 

  70. Cui YL, He SY, Xue MF, Zhang J, Wang HX, Yao Y . Protective effect of a multiantigenic DNA vaccine against Toxoplasma gondii with co-delivery of IL-12 in mice. Parasite Immunol 2008; 30: 309–313.

    Article  CAS  PubMed  Google Scholar 

  71. Trinchieri G . Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3: 133–146.

    Article  CAS  PubMed  Google Scholar 

  72. Dustin ML, Tseng SY, Varma R, Campi G . T cell-dendritic cell immunological synapses. Curr Opin Immunol 2006; 18: 512–516.

    Article  CAS  PubMed  Google Scholar 

  73. Englund P, Lindroos E, Nennesmo I, Klareskog L, Lundberg IE . Skeletal muscle fibers express major histocompatibility complex class II antigens independently of inflammatory infiltrates in inflammatory myopathies. Am J Pathol 2001; 159: 1263–1273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Curnow SJ, Willcox N, Vincent A . Induction of primary immune responses by allogeneic human myoblasts: dissection of the cell types required for proliferation, IFNgamma secretion and cytotoxicity. J Neuroimmunol 1998; 86: 53–62.

    Article  CAS  PubMed  Google Scholar 

  75. Goebels N, Michaelis D, Wekerle H, Hohlfeld R . Human myoblasts as antigen-presenting cells. J Immunol 1992; 149: 661–667.

    CAS  PubMed  Google Scholar 

  76. Curnow J, Corlett L, Willcox N, Vincent A . Presentation by myoblasts of an epitope from endogenous acetylcholine receptor indicates a potential role in the spreading of the immune response. J Neuroimmunol 2001; 115: 127–134.

    Article  CAS  PubMed  Google Scholar 

  77. Behrens L, Kerschensteiner M, Misgeld T, Goebels N, Wekerle H, Hohlfeld R . Human muscle cells express a functional costimulatory molecule distinct from B7.1 (CD80) and B7.2 (CD86) in vitro and in inflammatory lesions. J Immunol 1998; 161: 5943–5951.

    CAS  PubMed  Google Scholar 

  78. Murata K, Dalakas MC . Expression of the costimulatory molecule BB-1, the ligands CTLA-4 and CD28, and their mRNA in inflammatory myopathies. Am J Pathol 1999; 155: 453–460.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Greenwald RJ, Freeman GJ, Sharpe AH . The B7 family revisited. Annu Rev Immunol 2005; 23: 515–548.

    Article  PubMed  CAS  Google Scholar 

  80. Sharpe AH, Freeman GJ . The B7-CD28 superfamily. Nat Rev Immunol 2002; 2: 116–126.

    Article  CAS  PubMed  Google Scholar 

  81. Wiendl H, Mitsdoerffer M, Schneider D, Melms A, Lochmuller H, Hohlfeld R et al. Muscle fibres and cultured muscle cells express the B7.1/2-related inducible co-stimulatory molecule, ICOSL: implications for the pathogenesis of inflammatory myopathies. Brain 2003; 126: 1026–1035.

    Article  PubMed  Google Scholar 

  82. Schmidt J, Rakocevic G, Raju R, Dalakas MC . Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity. Brain 2004; 127: 1182–1190.

    Article  PubMed  Google Scholar 

  83. Wiendl H, Mitsdoerffer M, Schneider D, Chen L, Lochmüller H, Melms A et al. Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB J 2003; 17: 1892–1894.

    Article  CAS  PubMed  Google Scholar 

  84. Waschbisch A, Wintterle S, Lochmüller H, Walter MC, Wischhusen J, Kieseier BC et al. Human muscle cells express the costimulatory molecule B7-H3, which modulates muscle-immune interactions. Arthritis Rheum 2008; 58: 3600–3608.

    Article  CAS  PubMed  Google Scholar 

  85. Carreno BM, Collins M . The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 2002; 20: 29–53.

    Article  CAS  PubMed  Google Scholar 

  86. Fries KM, Sempowski GD, Gaspari AA, Blieden T, Looney RJ, Phipps RP . CD40 expression by human fibroblasts. Clin Immunol Immunopathol 1995; 77: 42–51.

    Article  CAS  PubMed  Google Scholar 

  87. Karmann K, Hughes CC, Schechner J, Fanslow WC, Pober JS . CD40 on human endothelial cells: inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Sci USA 1995; 92: 4342–4346.

    Article  CAS  Google Scholar 

  88. Yang Y, Haecker SE, Su Q, Wilson JM . Immunology of gene therapy with adenoviral vector in mouse skeletal muscle. Hum Mol Genet 1996; 5: 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  89. Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ . The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation 1984; 38: 287–292.

    Article  CAS  PubMed  Google Scholar 

  90. Bender A, Ernst N, Iglesias A, Dornmair K, Wekerle H, Hohlfeld R . T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8+ T cells. J Exp Med 1995; 181: 1863–1868.

    Article  CAS  PubMed  Google Scholar 

  91. Dalakas MC . Polymyositis, dermatomyositis and inclusion-body myositis. N Engl J Med 1991; 325: 1487–1498.

    Article  CAS  PubMed  Google Scholar 

  92. Hohlfeld R, Engel AG . Coculture with autologous myotubes of cytotoxic T cells isolated from muscle in inflammatory myopathies. Ann Neurol 1991; 29: 498–507.

    Article  CAS  PubMed  Google Scholar 

  93. Rice J, Ottensmeier CH, Stevenson FK . DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8: 108–120.

    Article  CAS  PubMed  Google Scholar 

  94. Wiendl H, Behrens L, Maier S, Johnson MA, Weiss EH, Hohlfeld R . Muscle fibers in inflammatory myopathies and cultured myoblasts express the nonclassical major histocompatibility antigen HLA-G. Ann Neurol 2000; 48: 679–684.

    Article  CAS  PubMed  Google Scholar 

  95. Rouas-Freiss N, Gonçalves RM, Menier C, Dausset J, Carosella ED . Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 1997; 94: 11520–11525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N . HLA-G: a shield against inflammatory aggression. Trends Immunol 2001; 22: 553–555.

    Article  CAS  PubMed  Google Scholar 

  97. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED . HLA-G2, -G3 and -G4 isoforms expressed as nonmature cell-surface glycoproteins inhibit NK and antigenspecific CTLcytolysis. J Immunol 2001; 166: 5018–5026.

    Article  CAS  PubMed  Google Scholar 

  98. Wiendl H, Mitsdoerffer M, Weller M . Express and protect yourself: the potential role of HLA-G on muscle cells and in inflammatory myopathies. Hum Immunol 2003; 64: 1050–1056.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Università Cattolica grants (linea D.1) to EB and CP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Bartoccioni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, M., Scuderi, F., Provenzano, C. et al. Skeletal muscle cells: from local inflammatory response to active immunity. Gene Ther 18, 109–116 (2011). https://doi.org/10.1038/gt.2010.124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.124

Keywords

This article is cited by

Search

Quick links