Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic and gene expression analysis of ankylosing spondylitis-associated loci implicate immune cells and the gut in the disease pathogenesis

Abstract

Ankylosing spondylitis (AS) is a common immune-mediated arthropathy primarily affecting the spine and pelvis. Most AS patients have subclinical intestinal inflammation, suggesting the gut microbiome and the immune response play a role in pathogenesis. Susceptibility to AS is primarily genetic, and at least 114 susceptibility variants have been identified to date. We applied bioinformatic methods utilizing epigenetic and gene and protein expression data to identify the cell types through which AS-associated variants operate. Variants were enriched in transcriptionally regulated regions in monocytes, CD4+ and CD8+ T cells, natural killer cells, regulatory T cells and B cells and mucosa from the small intestine, sigmoid colon and rectum. Weak signals were detected in bone cells, consistent with bone disease being a secondary manifestation. RNA sequencing of blood cells from AS patients and controls identified differentially expressed genes. Interrogation of expression databases showed that the upregulated genes were enriched in monocytes and downregulated genes were enriched in CD8+ T cells and natural killer cells. Gene Ontology term enrichment analysis identified microbes and the gut in the aetiology of AS. These findings identify the key immune cell types that drive the disease, and further highlight the involvement of the gut microbiome in the pathogenesis of AS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mielants H, Veys EM, Cuvelier C, De Vos M, Botelberghe L . HLA-B27 related arthritis and bowel inflammation. Part 2. Ileocolonoscopy and bowel histology in patients with HLA-B27 related arthritis. J Rheumatol 1985; 12: 294–298.

    CAS  PubMed  Google Scholar 

  2. Brown MA, Kennedy LG, MacGregor AJ, Darke C, Duncan E, Shatford JL et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum 1997; 40: 1823–1828.

    Article  CAS  PubMed Central  Google Scholar 

  3. Brown MA, Laval SH, Brophy S, Calin A . Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis 2000; 59: 883–886.

    Article  CAS  PubMed Central  Google Scholar 

  4. Braun J, Bollow M, Remlinger G, Eggens U, Rudwaleit M, Distler A et al. Prevalence of spondylarthropathies in HLA-B27 positive and negative blood donors. Arthritis Rheum 1998; 41: 58–67.

    Article  CAS  Google Scholar 

  5. Zeng QY, Chen R, Darmawan J, Xiao ZY, Chen SB, Wigley R et al. Rheumatic diseases in China. Arthritis Res Ther 2008; 10: R17.

    Article  PubMed Central  Google Scholar 

  6. Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD . Ankylosing spondylitis and HL-A 27. Lancet 1973; 1: 904–907.

    Article  CAS  Google Scholar 

  7. Caffrey MF, James DC . Human lymphocyte antigen association with ankylosing spondylitis. Nature 1973; 9: 121.

    Article  Google Scholar 

  8. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet 2016; 48: 510–518.

    Article  CAS  PubMed Central  Google Scholar 

  9. Wellcome Trust Case Control Consortium Australo-Anglo-American Spondylitis Consortium (TASC), Burton PR, Clayton DG, Cardon LR, Craddock N et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329–1337.

    Article  Google Scholar 

  10. Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. PLoS Genet 2010; 6: e1001195.

    Article  PubMed Central  Google Scholar 

  11. International Genetics of Ankylosing Spondylitis Consortium (IGAS), Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet 2013; 45: 730–738.

    Article  Google Scholar 

  12. Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet 2011; 43: 761–767.

    Article  CAS  PubMed Central  Google Scholar 

  13. Cortes A, Pulit SL, Leo PJ, Pointon JJ, Robinson PC, Weisman MH et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat Commun 2015; 6: 7146.

    Article  PubMed Central  Google Scholar 

  14. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012; 337: 1190–1195.

    Article  CAS  PubMed Central  Google Scholar 

  15. Kumar V, Westra HJ, Karjalainen J, Zhernakova DV, Esko T, Hrdlickova B et al. Human disease-associated genetic variation impacts large intergenic non-coding RNA expression. PLoS Genet 2013; 9: e1003201.

    Article  CAS  PubMed Central  Google Scholar 

  16. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42: 1118–1125.

    Article  CAS  PubMed Central  Google Scholar 

  17. Fraser HB, Xie XH . Common polymorphic transcript variation in human disease. Genome Res 2009; 19: 567–575.

    Article  CAS  Google Scholar 

  18. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  19. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010; 28: 1045–1048.

    Article  CAS  PubMed Central  Google Scholar 

  20. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47: 381–386.

    Article  CAS  PubMed Central  Google Scholar 

  21. Szalay B, Meszaros G, Cseh A, Acs L, Deak M, Kovacs L et al. Adaptive immunity in ankylosing spondylitis: phenotype and functional alterations of T-cells before and during infliximab therapy. Clin Dev Immunol 2012; 2012: 808724.

    Article  Google Scholar 

  22. Shen H, Goodall JC, Hill Gaston JS . Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 2009; 60: 1647–1656.

    Article  CAS  Google Scholar 

  23. Chan AT, Kollnberger SD, Wedderburn LR, Bowness P . Expansion and enhanced survival of natural killer cells expressing the killer immunoglobulin-like receptor KIR3DL2 in spondylarthritis. Arthritis Rheum 2005; 52: 3586–3595.

    Article  CAS  Google Scholar 

  24. Kenna TJ, Davidson SI, Duan R, Bradbury LA, McFarlane J, Smith M et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum 2012; 64: 1420–1429.

    Article  CAS  Google Scholar 

  25. Niu XY, Zhang HY, Liu YJ, Zhao D, Shan YX, Jiang YF . Peripheral B-cell activation and exhaustion markers in patients with ankylosing spondylitis. Life Sci 2013; 93: 687–692.

    Article  CAS  Google Scholar 

  26. Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, Canete JD et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum 2012; 64: 99–109.

    Article  CAS  Google Scholar 

  27. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum 2009; 60: 955–965.

    Article  CAS  Google Scholar 

  28. Ciccia F, Bombardieri M, Rizzo A, Principato A, Giardina AR, Raiata F et al. Over-expression of Paneth cell-derived anti-microbial peptides in the gut of patients with ankylosing spondylitis and subclinical intestinal inflammation. Rheumatology (Oxford) 2010; 49: 2076–2083.

    Article  CAS  Google Scholar 

  29. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol 2014; 67: 686–691.

    Article  Google Scholar 

  30. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518: 337–343.

    Article  CAS  Google Scholar 

  31. Uddin M, Codner D, Hasan SM, Scherer SW, O'Rielly DD, Rahman P . Integrated genomics identifies convergence of ankylosing spondylitis with global immune mediated disease pathways. Sci Rep 2015; 5: 10314.

    Article  CAS  PubMed Central  Google Scholar 

  32. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 2013; 45: 124–130.

    Article  CAS  Google Scholar 

  33. Shlyueva D, Stampfel G, Stark A . Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 2014; 15: 272–286.

    Article  CAS  Google Scholar 

  34. Slowikowski K, Hu XL, Raychaudhuri S . SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. Bioinformatics 2014; 30: 2496–2497.

    Article  CAS  PubMed Central  Google Scholar 

  35. Wang X, Lin Z, Wei Q, Jiang Y, Gu J . Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. Rheumatol Int 2009; 29: 1343–1347.

    Article  CAS  Google Scholar 

  36. Mei Y, Pan F, Gao J, Ge R, Duan Z, Zeng Z et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin Rheumat 2011; 30: 269–273.

    Article  Google Scholar 

  37. Schirmer M, Goldberger C, Wurzner R, Duftner C, Pfeiffer KP, Clausen J et al. Circulating cytotoxic CD8(+) CD28(-) T cells in ankylosing spondylitis. Arthritis Res 2002; 4: 71–76.

    Article  Google Scholar 

  38. Lau MC, Keith P, Costello ME, Bradbury LA, Hollis KA, Thomas R et al. Genetic association of ankylosing spondylitis with TBX21 influences T-bet and pro-inflammatory cytokine expression in humans and SKG mice as a model of spondyloarthritis. Ann Rheum Dis 2016; 76: 261–269.

    Article  Google Scholar 

  39. Zhu J, Yamane H, Paul WE . Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28: 445–489.

    Article  CAS  PubMed Central  Google Scholar 

  40. Dienz O, Rincon M . The effects of IL-6 on CD4 T cell responses. Clin Immunol 2009; 130: 27–33.

    Article  CAS  Google Scholar 

  41. Bowness P, Ridley A, Shaw J, Chan AT, Wong-Baeza I, Fleming M et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol 2011; 186: 2672–2680.

    Article  CAS  PubMed Central  Google Scholar 

  42. Song IH, Heldmann F, Rudwaleit M, Listing J, Appel H, Braun J et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum 2010; 62: 1290–1297.

    Article  CAS  Google Scholar 

  43. Wright C, Edelmann M, diGleria K, Kollnberger S, Kramer H, McGowan S et al. Ankylosing spondylitis monocytes show upregulation of proteins involved in inflammation and the ubiquitin proteasome pathway. Ann Rheum Dis 2009; 68: 1626–1632.

    Article  CAS  Google Scholar 

  44. Conrad K, Wu P, Sieper J, Syrbe U . In vivo pre-activation of monocytes in patients with axial spondyloarthritis. Arthritis Res Ther 2015; 17: 179.

    Article  PubMed Central  Google Scholar 

  45. Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, Peralta S et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum 2012; 64: 1869–1878.

    Article  CAS  Google Scholar 

  46. Costello ME, Elewaut D, Kenna TJ, Brown MA . Microbes, the gut and ankylosing spondylitis. Arthritis Res Ther 2013; 15: 214.

    Article  PubMed Central  Google Scholar 

  47. Brown MA, Kenna T, Wordsworth BP . Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol 2016; 12: 81–91.

    Article  CAS  Google Scholar 

  48. Kamada N, Seo SU, Chen GY, Nunez G . Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13: 321–335.

    Article  CAS  Google Scholar 

  49. Kenna TJ, Brown MA . Immunopathogenesis of ankylosing spondylitis. Int J Clin Rheumatol 2013; 8: 265–274.

    Article  CAS  Google Scholar 

  50. Cua DJ, Sherlock JP . Autoimmunity's collateral damage: gut microbiota strikes 'back'. Nat Med 2011; 17: 1055–1056.

    Article  CAS  Google Scholar 

  51. Lories RJ, Schett G . Pathophysiology of new bone formation and ankylosis in spondyloarthritis. Rheum Dis Clin North Am 2012; 38: 555–567.

    Article  Google Scholar 

  52. Tseng HW, Pitt ME, Glant TT, McRae AF, Kenna TJ, Brown MA et al. Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes. Arthritis Res Ther 2016; 18: 35.

    Article  PubMed Central  Google Scholar 

  53. Maksymowych WP, Wichuk S, Chiowchanwisawakit P, Lambert RG, Pedersen SJ . Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis. Arthritis Rheumatol 2014; 66: 2958–2967.

    Article  Google Scholar 

  54. Kenna TJ, Brown MA . The role of IL-17-secreting mast cells in inflammatory joint disease. Nat Rev Rheumatol 2013; 9: 375–379.

    Article  CAS  Google Scholar 

  55. Smith JA . Update on ankylosing spondylitis: current concepts in pathogenesis. Curr Allergy Asthma Rep 2015; 15: 489.

    Article  Google Scholar 

  56. Pinto SM, Manda SS, Kim MS, Taylor K, Selvan LD, Balakrishnan L et al. Functional annotation of proteome encoded by human chromosome 22. J Proteome Res 2014; 13: 2749–2760.

    Article  CAS  PubMed Central  Google Scholar 

  57. Love MI, Huber W, Anders S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550.

    Article  PubMed Central  Google Scholar 

  58. Phipson B, Smyth GK . Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol 2010; 9 Article39.

Download references

Acknowledgements

We thank the participating patients and healthy controls for taking part in this study. MAB is funded by a National Health and Medical Research Council Senior Principal Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Brown.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Haynes, K., Pennisi, D. et al. Epigenetic and gene expression analysis of ankylosing spondylitis-associated loci implicate immune cells and the gut in the disease pathogenesis. Genes Immun 18, 135–143 (2017). https://doi.org/10.1038/gene.2017.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2017.11

This article is cited by

Search

Quick links