Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HNRNPA1 interacts with a 5′-flanking distal element of interleukin-6 and upregulates its basal transcription

Abstract

Interleukin-6 (IL-6) is an important pro-inflammatory cytokine involved in many autoimmune and inflammatory diseases. We have shown previously that a region from −5307 to −5202 bp upstream of the IL-6 transcriptional start site is responsible for basal IL-6 gene expression, and that there were DNA-binding proteins involved from electrophoretic mobility shift assay (EMSA) and transient expression experiments. Here we have combined surface plasmon resonance technology with mass spectrometry analysis and have identified nuclear proteins bound to this region. HNRNPA1 and HNRNPA2B1 were found consistently. EMSA supershift and chromatin immunoprecipitation assays confirmed the involvement of HNRNPA1, but not of HNRNPA2B1. Knocking down the HNRNPA1 expression by small interfering RNA resulted in reduced IL-6 transcriptional activity as assessed from transfection experiments using reporter constructs, mRNA and protein measurements. Overexpression of HNRNPA1 cDNA increased IL-6 mRNA expression. This regulation was dependent on the presence of the sequence from −5307 to −5202 bp of the IL-6 gene. Thus, HNRNPA1 is a novel transcriptional regulator of IL-6 expression, acting via the 5′-flanking sequence of the gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Naugler WE, Karin M . The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 2008; 14: 109–119.

    Article  CAS  Google Scholar 

  2. Libermann TA, Baltimore D . Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10: 2327–2334.

    Article  CAS  Google Scholar 

  3. Faggioli L, Merola M, Hiscott J, Furia A, Monese R, Tovey M et al. Molecular mechanisms regulating induction of interleukin-6 gene transcription by interferon-gamma. Eur J Immunol 1997; 27: 3022–3030.

    Article  CAS  Google Scholar 

  4. Dendorfer U, Oettgen P, Libermann TA . Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandins, cyclic AMP, and lipopolysaccharide. Mol Cell Biol 1994; 14: 4443–4454.

    Article  CAS  Google Scholar 

  5. Isshiki H, Akira S, Tanabe O, Nakajima T, Shimamoto T, Hirano T et al. Constitutive and interleukin-1 (IL-1)-inducible factors interact with the IL-1-responsive element in the IL-6 gene. Mol Cell Biol 1990; 10: 2757–2764.

    Article  CAS  Google Scholar 

  6. Kang SH, Brown DA, Kitajima I, Xu X, Heidenreich O, Gryaznov S et al. Binding and functional effects of transcriptional factor Sp1 on the murine interleukin-6 promotor. J Biol Chem 1996; 271: 7330–7335.

    Article  CAS  Google Scholar 

  7. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, Humphries S et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998; 102: 1369–1376.

    Article  CAS  Google Scholar 

  8. Ogilvie EM, Fife MS, Thompson SD, Twine N, Tsoras M, Fisher SA et al. The -174G allele of the interleukin-6 gene confers susceptibility to systemic arthritis in children: a multicenter study using simplex and multiplex juvenile idiopathic arthritis families. Arthritis Rheum 2003; 48: 3202–3206.

    Article  CAS  Google Scholar 

  9. Schotte H, Schluter B, Rust S, Assmann G, Domschke W, Gaubitz M . Interleukin-6 promoter polymorphism (-174 GIG) in Caucasian German patients with systemic lupus erythematosus. Rheumatology 2001; 40: 393–400.

    Article  CAS  Google Scholar 

  10. Georges JL, Loukaci V, Poirier O, Evans A, Luc G, Arveiler D et al. Interleukin-6 gene polymorphisms and susceptibility to myocardial infarction: the ECTIM study. J Mol Med 2001; 79: 300–305.

    Article  CAS  Google Scholar 

  11. Humphries SE, Luong LA, Ogg MS, Hawe E, Miller GJ . The interleukin-6-174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J 2001; 22: 2243–2252.

    Article  CAS  Google Scholar 

  12. Samuel JM, Kelberman D, Smith AJ, Humphries SE, Woo P . Identification of a novel regulatory region in the interleukin-6 gene promoter. Cytokine 2008; 42: 256–264.

    Article  CAS  Google Scholar 

  13. Majka J, Speck C . Analysis of protein-DNA interactions using surface plasmon resonance. In: Seitz H (ed) Analytics of Protein-DNA Interactions; vol. 104. Springer-Verlag Berlin: Berlin, 2007, pp 13–36.

    Google Scholar 

  14. Paramasivam M, Membrino A, Cogoi S, Fukuda H, Nakagama H, Xodo LE . Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription. Nucleic Acids Res 2009; 37: 2841–2853.

    Article  CAS  Google Scholar 

  15. Campillos M, Lamas JRN, Garcia MA, Bullido MJ, Valdivieso F, Vazquez J . Specific interaction of heterogeneous nuclear ribonucleoprotein A1 with the-219T allelic form modulates APOE promoter activity. Nucleic Acids Res 2003; 31: 3063–3070.

    Article  CAS  Google Scholar 

  16. Noguchi E, Homma Y, Kang X, Netea MG, Ma X . A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat Immunol 2009; 10: 471–479.

    Article  CAS  Google Scholar 

  17. Nelson RW, Krone JR . Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS). J Mol Recognit 1999; 12: 77–93.

    Article  CAS  Google Scholar 

  18. Buijs J, Franklin GC . SPR-MS in functional proteomics. Brief Funct Genom Proteom 2005; 4: 39–47.

    Article  CAS  Google Scholar 

  19. Bouffartigues E, Leh H, Anger-Leroy M, Rimsky S, Buckle M . Rapid coupling of Surface Plasmon Resonance (SPR and SPRi) and ProteinChip based mass spectrometry for the identification of proteins in nucleoprotein interactions. Nucleic Acids Res 2007; 35: e39.

    Article  Google Scholar 

  20. Dreyfuss G, Matunis MJ, Pinolroma S, Burd CG . hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993; 62: 289–321.

    Article  CAS  Google Scholar 

  21. Caceres JF, Stamm S, Helfman DM, Krainer AR . Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 1994; 265: 1706–1709.

    Article  CAS  Google Scholar 

  22. Mayeda A, Munroe SH, Caceres JF, Krainer AR . Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. Embo J 1994; 13: 5483–5495.

    Article  CAS  Google Scholar 

  23. Hamilton BJ, Nagy E, Malter JS, Arrick BA . Rigby WFC. Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J Biol Chem 1993; 268: 8881–8887.

    CAS  Google Scholar 

  24. Henics T, Sanfridson A, Hamilton BJ, Nagy E, Rigby WFC . Enhanced stability of interleukin-2 mRNA in MLA 144 cells. Possible role of cytoplasmic AU-rich sequence-binding proteins. J Biol Chem 1994; 269: 5377–5383.

    CAS  PubMed  Google Scholar 

  25. Ding JZ, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM . Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev 1999; 13: 1102–1115.

    Article  CAS  Google Scholar 

  26. Fiset S, Chabot B . HnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic Acids Res 2001; 29: 2268–2275.

    Article  CAS  Google Scholar 

  27. Tay N, Chan SH, Ren EC . Identification and cloning of a novel heterogeneous nuclear ribonucleoprotein C-like protein that functions as a transcriptional activator of the hepatitis B virus enhancer II. J Virol 1992; 66: 6841–6848.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Michelotti EF, Michelotti GA, Aronsohn AI, Levens D . Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol Cell Biol 1996; 16: 2350–2360.

    Article  CAS  Google Scholar 

  29. Lau JS, Baumeister P, Kim E, Roy B, Hsieh TY, Lai M et al. Heterogeneous nuclear ribonucleoproteins as regulators of gene expression through interactions with the human thymidine kinase promoter. J Cell Biochem 2000; 79: 395–406.

    Article  CAS  Google Scholar 

  30. Donev RM, Doneva TA, Bowen WR, Sheer D . HnRNP-A1 binds directly to double-stranded DNA in vitro within a 36 bp sequence. Mol Cell Biochem 2002; 233: 181–185.

    Article  CAS  Google Scholar 

  31. Guha M, Pan H, Fang JK, Avadhani NG . Heterogeneous nuclear ribonucleoprotein A2 is a common transcriptional coactivator in the nuclear transcription response to mitochondrial respiratory stress. Mol Biol Cell 2009; 20: 4107–4119.

    Article  CAS  Google Scholar 

  32. Guha M, Tang W, Sondheimer N, Avadhani NG . Role of calcineurin, hnRNPA2 and Akt in mitochondrial respiratory stress-mediated transcription activation of nuclear gene targets. Biochim Biophys Acta 2010; 1797: 1055–1065.

    Article  CAS  Google Scholar 

  33. Siapka S, Patrinou-Georgoula M, Vlachoyiannopoulos PG, Guialis A . Multiple specificities of autoantibodies against hnRNP A/B proteins in systemic rheumatic diseases and hnRNP L as an associated novel autoantigen. Autoimmunity 2007; 40: 223–233.

    Article  CAS  Google Scholar 

  34. Caporali R, Bugatti S, Bruschi E, Cavagna L, Montecucco C . Autoantibodies to heterogeneous nuclear ribonucleoproteins. Autoimmunity 2005; 38: 25–32.

    Article  CAS  Google Scholar 

  35. Murakami M, Nishimoto N . The value of blocking IL-6 outside of rheumatoid arthritis: current perspective. Curr Opin Rheumatol 2011; 23: 273–277.

    Article  CAS  Google Scholar 

  36. Thiele BJ, Doller A, Kahne T, Pregla R, Hetzer R, Regitz-Zagrosek V . RNA-binding proteins heterogeneous nuclear ribonucleoprotein A1, E1, and K are involved in post-transcriptional control of collagen I and III synthesis. Circ Res 2004; 95: 1058–1066.

    Article  CAS  Google Scholar 

  37. Buckle M, Williams RM, Negroni M, Buc H . Real time measurements of elongation by a reverse transcriptase using surface plasmon resonance. Proc Natl Acad Sci USA 1996; 93: 889–894.

    Article  CAS  Google Scholar 

  38. Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Arthritis Research UK (no. 17287). The work was undertaken at UCLH/UCL that received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. We thank Dr John Sinclair from Dr Timms’ group for processing preliminary samples, and Professor Steve Humphries for discussion of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Woo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, D., Worthington, J., Timms, J. et al. HNRNPA1 interacts with a 5′-flanking distal element of interleukin-6 and upregulates its basal transcription. Genes Immun 14, 479–486 (2013). https://doi.org/10.1038/gene.2013.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2013.41

Keywords

This article is cited by

Search

Quick links