Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple linked quantitative trait loci within the Tmevd2/Eae3 interval control the severity of experimental allergic encephalomyelitis in DBA/2J mice

Abstract

Theiler's murine encephalomyelitis virus-induced demyelination (TMEVD) and experimental allergic encephalomyelitis (EAE) are the principal animal models of multiple sclerosis (MS). Previously, we provided evidence that Tmevd2 and Eae3 may represent either a shared susceptibility locus or members of a gene complex controlling susceptibility to central nervous system inflammatory demyelinating disease. To explore the genetic relationship between Tmevd2 and Eae3, we generated a D2.C-Tmevd2 interval-specific congenic (ISC) line and three overlapping interval-specific recombinant congenic (ISRC) lines in which the Tmevd2-resistant allele from BALB/cByJ was introgressed onto the TMEVD-susceptible DBA/2J background. These mice, all H2d, were studied for susceptibility to EAE elicited by immunization with proteolipid protein peptide 180–199. Compared with DBA/2J mice, D2.C-Tmevd2 mice developed a significantly less severe clinical disease course and EAE pathology in the spinal cord, confirming the existence of Eae3 and its linkage to Tmevd2 in this strain combination. Compared with DBA/2J and D2.C-Tmevd2, all three ISRC lines exhibited clinical disease courses of intermediate severity. Neither differences in ex vivo antigen-specific cytokine nor proliferative responses uniquely cosegregated with differences in disease severity. These results indicate that multiple quantitative trait loci (QTLs) within the Tmevd2/Eae3 interval influence EAE severity, one of which includes a homology region for a QTL found in MS by admixture mapping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG . Multiple sclerosis. N Engl J Med 2000; 343: 938–952.

    Article  CAS  Google Scholar 

  2. Courtney AM, Treadaway K, Remington G, Frohman E . Multiple sclerosis. Med Clin North Am 2009; 93: 451–476, ix-x.

    Article  Google Scholar 

  3. Dyment DA, Ebers GC, Sadovnick AD . Genetics of multiple sclerosis. Lancet Neurol 2004; 3: 104–110.

    Article  CAS  Google Scholar 

  4. Ramagopalan SV, Dyment DA, Ebers GC . Genetic epidemiology: the use of old and new tools for multiple sclerosis. Trends Neurosci 2008; 31: 645–652.

    Article  CAS  Google Scholar 

  5. Ebers GC . Environmental factors and multiple sclerosis. Lancet Neurol 2008; 7: 268–277.

    Article  Google Scholar 

  6. Lincoln MR, Ramagopalan SV, Chao MJ, Herrera BM, Deluca GC, Orton SM et al. Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. Proc Natl Acad Sci USA 2009; 106: 7542–7547.

    Article  CAS  Google Scholar 

  7. Lipton HL, Kumar AS, Trottier M . Theiler's virus persistence in the central nervous system of mice is associated with continuous viral replication and a difference in outcome of infection of infiltrating macrophages versus oligodendrocytes. Virus Res 2005; 111: 214–223.

    Article  CAS  Google Scholar 

  8. Stromnes IM, Goverman JM . Active induction of experimental allergic encephalomyelitis. Nat Protoc 2006; 1: 1810–1819.

    Article  CAS  Google Scholar 

  9. Rodriguez M . Effectors of demyelination and remyelination in the CNS: implications for multiple sclerosis. Brain Pathol 2007; 17: 219–229.

    Article  CAS  Google Scholar 

  10. Melvold RW, Jokinen DM, Miller SD, Dal Canto MC, Lipton HL . Identification of a locus on mouse chromosome 3 involved in differential susceptibility to Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Virol 1990; 64: 686–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Teuscher C, Rhein DM, Livingstone KD, Paynter RA, Doerge RW, Nicholson SM et al. Evidence that Tmevd2 and eae3 may represent either a common locus or members of a gene complex controlling susceptibility to immunologically mediated demyelination in mice. J Immunol 1997; 159: 4930–4934.

    CAS  PubMed  Google Scholar 

  12. Nicholson SM, Peterson JD, Miller SD, Wang K, Dal Canto MC, Melvold RW . BALB/c substrain differences in susceptibility to Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neuroimmunol 1994; 52: 19–24.

    Article  CAS  Google Scholar 

  13. Lyons JA, Ramsbottom MJ, Trotter JL, Cross AH . Identification of the encephalitogenic epitopes of CNS proteolipid protein in BALB/c mice. J Autoimmun 2002; 19: 195–201.

    Article  Google Scholar 

  14. Butterfield RJ, Roper RJ, Rhein DM, Melvold RW, Haynes L, Ma RZ et al. Sex-specific quantitative trait loci govern susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Genetics 2003; 163: 1041–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Reich D, Patterson N, De Jager PL, McDonald GJ, Waliszewska A, Tandon A et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 2005; 37: 1113–1118.

    Article  CAS  Google Scholar 

  16. Maatta JA, Nygardas PT, Hinkkanen AE . Enhancement of experimental autoimmune encephalomyelitis severity by ultrasound emulsification of antigen/adjuvant in distinct strains of mice. Scand J Immunol 2000; 51: 87–90.

    Article  CAS  Google Scholar 

  17. Fillmore PD, Brace M, Troutman SA, Blankenhorn EP, Diehl S, Rincon M et al. Genetic analysis of the influence of neuroantigen-complete Freund's adjuvant emulsion structures on the sexual dimorphism and susceptibility to experimental allergic encephalomyelitis. Am J Pathol 2003; 163: 1623–1632.

    Article  CAS  Google Scholar 

  18. Munoz JJ, Mackay IR . Production of experimental allergic encephalomyelitis with the aid of pertussigen in mouse strains considered genetically resistant. J Neuroimmunol 1984; 7: 91–96.

    Article  CAS  Google Scholar 

  19. Blankenhorn EP, Butterfield RJ, Rigby R, Cort L, Giambrone D, McDermott P et al. Genetic analysis of the influence of pertussis toxin on experimental allergic encephalomyelitis susceptibility: an environmental agent can override genetic checkpoints. J Immunol 2000; 164: 3420–3425.

    Article  CAS  Google Scholar 

  20. Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B . Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008; 180: 2227–2235.

    Article  Google Scholar 

  21. Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E, Zolin A et al. Mouse genome-wide association mapping needs linkage analysis to avoid false-positive Loci. PLoS Genet 2009; 5: e1000331.

    Article  Google Scholar 

  22. Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA et al. New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 1998; 161: 1860–1867.

    CAS  PubMed  Google Scholar 

  23. Encinas JA, Lees MB, Sobel RA, Symonowicz C, Greer JM, Shovlin CL et al. Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice. J Immunol 1996; 157: 2186–2192.

    CAS  PubMed  Google Scholar 

  24. Encinas JA, Weiner HL, Kuchroo VK . Inheritance of susceptibility to experimental autoimmune encephalomyelitis. J Neurosci Res 1996; 45: 655–669.

    Article  CAS  Google Scholar 

  25. Sundvall M, Jirholt J, Yang HT, Jansson L, Engstrom A, Pettersson U et al. Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nat Genet 1995; 10: 313–317.

    Article  CAS  Google Scholar 

  26. Iuliano BA, Schmeizer JD, Thiemann RL, Low PA, Rodriguez M . Motor and somatosensory evoked potentials in mice infected with Theiler's murine encephalomyelitis virus. J Neurol Sci 1994; 123: 186–194.

    Article  CAS  Google Scholar 

  27. McGavern DB, Murray PD, Rivera-Quinones C, Schmelzer JD, Low PA, Rodriguez M . Axonal loss results in spinal cord atrophy, electrophysiological abnormalities and neurological deficits following demyelination in a chronic inflammatory model of multiple sclerosis. Brain Pathol 2000; 123: 519–531.

    Google Scholar 

  28. Mazon Pelaez I, Vogler S, Strauss U, Wernhoff P, Pahnke J, Brockmann G et al. Identification of quantitative trait loci controlling cortical motor evoked potentials in experimental autoimmune encephalomyelitis: correlation with incidence, onset and severity of disease. Hum Mol Genet 2005; 14: 1977–1989.

    Article  CAS  Google Scholar 

  29. Takatsu K, Kouro T, Nagai Y . Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 2009; 101: 191–236.

    Article  CAS  Google Scholar 

  30. Weir C, Bernard CC, Backstrom BT . IL-5-deficient mice are susceptible to experimental autoimmune encephalomyelitis. Int Immunol 2003; 15: 1283–1289.

    Article  CAS  Google Scholar 

  31. Wensky A, Marcondes MC, Lafaille JJ . The role of IFN-gamma in the production of Th2 subpopulations: implications for variable Th2-mediated pathologies in autoimmunity. J Immunol 2001; 167: 3074–3081.

    Article  CAS  Google Scholar 

  32. Bell JJ, Divekar RD, Ellis JS, Cascio JA, Haymaker CL, Jain R et al. In trans T cell tolerance diminishes autoantibody responses and exacerbates experimental allergic encephalomyelitis. J Immunol 2008; 180: 1508–1516.

    Article  CAS  Google Scholar 

  33. Dardalhon V, Korn T, Kuchroo VK, Anderson AC . Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun 2008; 31: 252–256.

    Article  CAS  Google Scholar 

  34. Hoyer KK, Dooms H, Barron L, Abbas AK . Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2008; 226: 19–28.

    Article  CAS  Google Scholar 

  35. Karlsson J, Johannesson M, Lindvall T, Wernhoff P, Holmdahl R, Andersson A . Genetic interactions in Eae2 control collagen-induced arthritis and the CD4+/CD8+ T cell ratio. J Immunol 2005; 174: 533–541.

    Article  CAS  Google Scholar 

  36. Aubagnac S, Brahic M, Bureau JF . Viral load and a locus on chromosome 11 affect the late clinical disease caused by Theiler's virus. J Virol 1999; 73: 7965–7971.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Teuscher C, Butterfield RJ, Ma RZ, Zachary JF, Doerge RW, Blankenhorn EP . Sequence polymorphisms in the chemokines Scya1 (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/nonrelapsing experimental allergic encephalomyelitis. J Immunol 1999; 163: 2262–2266.

    CAS  PubMed  Google Scholar 

  38. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet 2009; 18: 2078–2090.

    Article  CAS  Google Scholar 

  39. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39: 1329–1337.

    Article  CAS  Google Scholar 

  40. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  CAS  Google Scholar 

  41. Rubio JP, Stankovich J, Field J, Tubridy N, Marriott M, Chapman C et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians. Genes Immun 2008; 9: 624–630.

    Article  CAS  Google Scholar 

  42. Kato K, Koyanagi M, Okada H, Takanashi T, Wong YW, Williams AF et al. CD48 is a counter-receptor for mouse CD2 and is involved in T cell activation. J Exp Med 1992; 176: 1241–1249.

    Article  CAS  Google Scholar 

  43. Wong YW, Williams AF, Kingsmore SF, Seldin MF . Structure, expression, and genetic linkage of the mouse BCM1 (OX45 or Blast-1) antigen. Evidence for genetic duplication giving rise to the BCM1 region on mouse chromosome 1 and the CD2/LFA3 region on mouse chromosome 3. J Exp Med 1990; 171: 2115–2130.

    Article  CAS  Google Scholar 

  44. Selvaraj P, Plunkett ML, Dustin M, Sanders ME, Shaw S, Springer TA . The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature 1987; 326: 400–403.

    Article  CAS  Google Scholar 

  45. Wandstrat AE, Nguyen C, Limaye N, Chan AY, Subramanian S, Tian XH et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 2004; 21: 769–780.

    Article  CAS  Google Scholar 

  46. Peng X, Kasran A, Bullens D, Ceuppens JL . Ligation of CD2 provides a strong helper signal for the production of the type 2 cytokines interleukin-4 and -5 by memory T cells. Cell Immunol 1997; 181: 76–85.

    Article  CAS  Google Scholar 

  47. Gabrilovich D . Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4: 941–952.

    Article  CAS  Google Scholar 

  48. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006; 203: 2691–2702.

    Article  CAS  Google Scholar 

  49. Weber MS, Prod'homme T, Youssef S, Dunn SE, Rundle CD, Lee L et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007; 13: 935–943.

    Article  CAS  Google Scholar 

  50. Bunce M, O'Neil CM, Barnardo MC, Krausa P, Browning MJ, Morris PJ et al. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 1995; 46: 355–367.

    Article  CAS  Google Scholar 

  51. Rozen S, Skaletsky HJ . Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds). Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press: Totowa, NJ, 2000, pp 365–386.

    Google Scholar 

  52. Teuscher C, Noubade R, Spach K, McElvany B, Bunn JY, Fillmore PD et al. Evidence that the Y chromosome influences autoimmune disease in male and female mice. Proc Natl Acad Sci USA 2006; 103: 8024–8029.

    Article  CAS  Google Scholar 

  53. Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, Sudweeks J et al. Genetic analysis of disease subtypes and sexual dimorphisms in mouse experimental allergic encephalomyelitis (EAE): relapsing/remitting and monophasic remitting/nonrelapsing EAE are immunogenetically distinct. J Immunol 1999; 162: 3096–3102.

    CAS  PubMed  Google Scholar 

  54. Muller DM, Pender MP, Greer JM . A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol 2000; 100: 174–182.

    Article  CAS  Google Scholar 

  55. Butterfield RJ, Blankenhorn EP, Roper RJ, Zachary JF, Doerge RW, Teuscher C . Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis. Am J Pathol 2000; 157: 637–645.

    Article  CAS  Google Scholar 

  56. Noubade R, Milligan G, Zachary JF, Blankenhorn EP, del Rio R, Rincon M et al. Histamine receptor H1 is required for TCR-mediated p38 MAPK activation and optimal IFN-gamma production in mice. J Clin Invest 2007; 117: 3507–3518.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Laura Cort and Meena Subramanian for technical support. This work was supported by the National Institutes of Health Grants NS36526 (CT), AI41747 (CT), AI058052 (CT), NS061014 (CT), NS060901 (CT) and AI45666 (CT) and by the National Multiple Sclerosis Society Grants RG3575 (EPB) and RG3575A5/1 (EPB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Teuscher.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spach, K., Case, L., Noubade, R. et al. Multiple linked quantitative trait loci within the Tmevd2/Eae3 interval control the severity of experimental allergic encephalomyelitis in DBA/2J mice. Genes Immun 11, 649–659 (2010). https://doi.org/10.1038/gene.2010.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.40

Keywords

This article is cited by

Search

Quick links