Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Proteins

Diets for body weight control and health: the potential of changing the macronutrient composition

Abstract

At the beginning of the last century obesity and type 2 diabetes were treated quite successfully using low-carbohydrate diets. Following the discovery of insulin, the carbohydrate content of the diabetic diet became more liberal, as glycaemia and glycosuria could be controlled, more or less well, with hypoglycaemic medication and insulin treatment. Later, saturated fats and high-plasma cholesterol concentrations were implicated in cardiovascular disease and since then high-carbohydrate diets have become synonymous with ‘health’ and have been conventional nutrition doctrine for the past 40 years. In spite of this, the prevalence of some non-communicable metabolic diseases have increased to epidemic proportions and have led an increasing number of researchers in the fields of medicine and nutrition to challenge the validity of present-day dietary guidelines. There is increasing evidence that diets with a lower, or even very-low, carbohydrate content can help overweight and obese individuals to lose and maintain lost weight, diabetics to control blood glucose with more ease and prevent the development of diabetic complications, while at the same time improving blood lipid profiles and biomarkers of cardiovascular risk. The present review considers the evolution of our diet and questions whether high-carbohydrate diets are indeed synonymous with health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Thomas Robert Malthus http://en.wikipedia.org/wiki/Thomas_Robert_Malthus (accessed on 31 January 2012).

  2. Milton K . The critical role played by animal source foods in human (Homo) evolution. J Nutr 2003; 133 (Suppl 2), 3886S–3892S.

    Article  CAS  Google Scholar 

  3. Cordain L, Eaton SB, Miller JB, Mann N, Hill K . The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur J Clin Nutr 2002; 56 (Suppl 1), S42–S52.

    Article  Google Scholar 

  4. Strohle A, Hahn A . Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: results from an ethnographic analysis. Nutr Res 2011; 31: 429–435.

    Article  Google Scholar 

  5. Eaton SB . The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition? Proc Nutr Soc 2006; 65: 1–6.

    Article  CAS  Google Scholar 

  6. Garn SM, Leonard WR . What did our ancestors eat? Nutr Rev 1989; 47: 337–345.

    Article  CAS  Google Scholar 

  7. Konner M, Eaton SB . Paleolithic nutrition: twenty-five years later. Nutr Clin Pract 2010; 25: 594–602.

    Article  Google Scholar 

  8. Stephen AM, Wald NJ . Trends in individual consumption of dietary fat in the United States, 1920-1984. Am J Clin Nutr 1990; 52: 457–469.

    Article  CAS  Google Scholar 

  9. Keys A . Atherosclerosis: a problem in newer public health. J Mt Sinai Hosp N Y 1953; 20: 118–139.

    CAS  PubMed  Google Scholar 

  10. Yerushalmy J, Hilleboe HE . Fat in the diet and mortality from heart disease; a methodologic note. N Y State J Med 1957; 57: 2343–2354.

    CAS  PubMed  Google Scholar 

  11. Keys A . Prediction and possible prevention of coronary disease. Am J Public Health Nations Health 1953; 43: 1399–1407.

    Article  CAS  Google Scholar 

  12. Kritchevsky D . History of recommendations to the public about dietary fat. J Nutr 1998; 128 (Suppl 2), 449S–452S.

    Article  CAS  Google Scholar 

  13. Report of Inter-Society Commission for Heart Disease Resources. Prevention of cardiovascular disease. Primary prevention of the atherosclerotic diseases. Circulation 1970; 42: A55–A95.

    Google Scholar 

  14. Stamler J . Diet and coronary heart disease. Biometrics 1982; 38 (Suppl), 95–118.

    Article  Google Scholar 

  15. Gidding SS, Lichtenstein AH, Faith MS, Karpyn A, Mennella JA, Popkin B et al. Implementing American Heart Association pediatric and adult nutrition guidelines: a scientific statement from the American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular Disease in the Young, Council on Arteriosclerosis, Thrombosis and Vascular Biology, Council on Cardiovascular Nursing, Council on Epidemiology and Prevention, and Council for High Blood Pressure Research. Circulation 2009; 119: 1161–1175.

    Article  Google Scholar 

  16. US Department of Agriculture, US Department of Health and Human Services Report of the Dietary Guidelines Advisory Committee on the dietary guidelines for Americans, 2010.

  17. Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M, McTiernan A et al. American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 2006; 56: 254–281.

    Article  Google Scholar 

  18. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM . Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 2006; 47: 296–308.

    Article  CAS  Google Scholar 

  19. Bantle JP, Wylie-Rosett J, Albright AL, Apovian CM, Clark NG, Franz MJ et al. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008; 31: S61–S78.

    Article  CAS  Google Scholar 

  20. Abbasi F, McLaughlin T, Lamendola C, Kim HS, Tanaka A, Wang T et al. High carbohydrate diets, triglyceride-rich lipoproteins, and coronary heart disease risk. Am J Cardiol 2000; 85: 45–48.

    Article  CAS  Google Scholar 

  21. Jeppesen J, Hein HO, Suadicani P, Gyntelberg F . Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol 1997; 17: 1114–1120.

    Article  CAS  Google Scholar 

  22. Jeppesen J, Schaaf P, Jones C, Zhou MY, Chen YD, Reaven GM . Effects of low-fat, high-carbohydrate diets on risk factors for ischemic heart disease in postmenopausal women. Am J Clin Nutr 1997; 65: 1027–1033.

    Article  CAS  Google Scholar 

  23. Reaven GM . Diet and Syndrome X. Curr Atheroscler Rep 2000; 2: 503–507.

    Article  CAS  Google Scholar 

  24. Garg A, Grundy SM, Unger RH . Comparison of effects of high and low carbohydrate diets on plasma lipoproteins and insulin sensitivity in patients with mild NIDDM. Diabetes 1992; 41: 1278–1285.

    Article  CAS  Google Scholar 

  25. Krauss RM . Dietary and genetic effects on low-density lipoprotein heterogeneity. Annu Rev Nutr 2001; 21: 283–295.

    Article  CAS  Google Scholar 

  26. Aeberli I, Zimmermann MB, Molinari L, Lehmann R, l'Allemand D, Spinas GA et al. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am J Clin Nutr 2007; 86: 1174–1178.

    Article  CAS  Google Scholar 

  27. Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA . A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 2003; 88: 1617–1623.

    Article  CAS  Google Scholar 

  28. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed BS et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003; 348: 2082–2090.

    Article  CAS  Google Scholar 

  29. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003; 348: 2074–2081.

    Article  CAS  Google Scholar 

  30. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 2008; 359: 229–241.

    Article  CAS  Google Scholar 

  31. Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP . Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med 2005; 142: 403–411.

    Article  CAS  Google Scholar 

  32. Nielsen JV, Joensson EA . Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab (Lond) 2008; 5: 14.

    Article  Google Scholar 

  33. Foster GD, Wyatt HR, Hill JO, Makris AP, Rosenbaum DL, Brill C et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med 2010; 153: 147–157.

    Article  Google Scholar 

  34. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D et al. A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults. J Nutr 2009; 139: 514–521.

    Article  CAS  Google Scholar 

  35. Samaha FF, Foster GD, Makris AP . Low-carbohydrate diets, obesity, and metabolic risk factors for cardiovascular disease. Curr Atheroscler Rep 2007; 9: 441–447.

    Article  Google Scholar 

  36. Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J et al. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med 2004; 140: 778–785.

    Article  Google Scholar 

  37. Accurso A, Bernstein RK, Dahlqvist A, Draznin B, Feinman RD, Fine EJ et al. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab (Lond) 2008; 5: 9.

    Article  Google Scholar 

  38. Hite AH, Meguid MM . Destined for greater obesity. Nutrition 2011; 27: 1078–1079.

    Article  Google Scholar 

  39. Hite AH, Feinman RD, Guzman GE, Satin M, Schoenfeld PA, Wood RJ . In the face of contradictory evidence: report of the Dietary Guidelines for Americans Committee. Nutrition 2010; 26: 915–924.

    Article  Google Scholar 

  40. Layman DK . Dietary Guidelines should reflect new understandings about adult protein needs. Nutr Metab (Lond) 2009; 6: 12.

    Article  Google Scholar 

  41. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM . Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr 2010; 91: 502–509.

    Article  CAS  Google Scholar 

  42. Winwood R . So you think you know the effects of dietary lipids on human health? - Fat chance!. J Inst Food Sci Tech 2011; 25: 26–28.

    Google Scholar 

  43. German JB, Dillard CJ . Saturated fats: what dietary intake? Am J Clin Nutr 2004; 80: 550–559.

    Article  CAS  Google Scholar 

  44. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2diabetes (UKPDS 33). Lancet 1998; 352: 837–853.

    Article  Google Scholar 

  45. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–865.

    Article  Google Scholar 

  46. Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28: 103–117.

    Article  CAS  Google Scholar 

  47. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986.

    Article  Google Scholar 

  48. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353: 2643–2653.

    Article  Google Scholar 

  49. Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2006; 29: 1963–1972.

    Article  Google Scholar 

  50. Ceriello A, Hanefeld M, Leiter L, Monnier L, Moses A, Owens D et al. Postprandial glucose regulation and diabetic complications. Arch Intern Med 2004; 164: 2090–2095.

    Article  CAS  Google Scholar 

  51. Heine RJ, Balkau B, Ceriello A, Del PS, Horton ES, Taskinen MR . What does postprandial hyperglycaemia mean? Diabet Med 2004; 21: 208–213.

    Article  CAS  Google Scholar 

  52. Levitan EB, Song Y, Ford ES, Liu S . Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147–2155.

    Article  Google Scholar 

  53. Middelbeek RJ, Horton ES . The role of glucose as an independent cardiovascular risk factor. Curr Diab Rep 2007; 7: 43–49.

    Article  CAS  Google Scholar 

  54. Abdul-Ghani MA, Norton L, DeFronzo RA . Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 2011; 32: 515–531.

    Article  CAS  Google Scholar 

  55. Hamdy O, Carver C . The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes. Curr Diab Rep 2008; 8: 413–420.

    Article  Google Scholar 

  56. Adlersberg D . The use of high protein diets in the treatment of diabetes mellitus. Am J Dig Dis 1948; 15: 109–115.

    Article  CAS  Google Scholar 

  57. Joslin EP . The Diabetic. Can Med Assoc J 1943; 48: 488–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Katsilambros N, Liatis S, Makrilakis K . Critical review of the international guidelines: what is agreed upon--what is not? Nestle Nutr Workshop Ser Clin Perform Programme 2006; 11: 207–218.

    Article  CAS  Google Scholar 

  59. Zivkovic AM, German JB, Sanyal AJ . Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 2007; 86: 285–300.

    Article  CAS  Google Scholar 

  60. Dietary Reference Intakes For Energy. Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. The National Academies Press: Washington DC, 2002.

  61. Bistrian BR, Blackburn GL, Flatt JP, Sizer J, Scrimshaw NS, Sherman M . Nitrogen metabolism and insulin requirements in obese diabetic adults on a protein-sparing modified fast. Diabetes 1976; 25: 494–504.

    Article  CAS  Google Scholar 

  62. Gannon MC, Nuttall FQ . Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr Metab (Lond) 2006; 3: 16.

    Article  Google Scholar 

  63. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA 2005; 294: 2455–2464.

    Article  CAS  Google Scholar 

  64. Eaton SB . Evolution and cholesterol. World Rev Nutr Diet 2009; 100: 46–54.

    Article  CAS  Google Scholar 

  65. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids 2008; 43: 65–77.

    Article  CAS  Google Scholar 

  66. Volek JS, Sharman MJ, Forsythe CE . Modification of lipoproteins by very low-carbohydrate diets. J Nutr 2005; 135: 1339–1342.

    Article  CAS  Google Scholar 

  67. Stafstrom CE, Rho JM . The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3: 1–8.

    Article  Google Scholar 

  68. Husain AM, Yancy WS, Carwile ST, Miller PP, Westman EC . Diet therapy for narcolepsy. Neurology 2004; 62: 2300–2302.

    Article  CAS  Google Scholar 

  69. Austin GL, Ogden LG, Hill JO . Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971-2006. Am J Clin Nutr 2011; 93: 836–843.

    Article  CAS  Google Scholar 

  70. Astrup A . The satiating power of protein--a key to obesity prevention? Am J Clin Nutr 2005; 82: 1–2.

    Article  CAS  Google Scholar 

  71. Hoffer LJ, Bistrian BR, Young VR, Blackburn GL, Matthews DE . Metabolic effects of very low calorie weight reduction diets. J Clin Invest 1984; 73: 750–758.

    Article  CAS  Google Scholar 

  72. Heaney RP, Layman DK . Amount and type of protein influences bone health. Am J Clin Nutr 2008; 87: 1567S–1570S.

    Article  CAS  Google Scholar 

  73. Ceglia L, Harris SS, Abrams SA, Rasmussen HM, Dallal GE, Dawson-Hughes B . Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption. J Clin Endocrinol Metab 2009; 94: 645–653.

    Article  CAS  Google Scholar 

  74. Layman DK, Clifton P, Gannon MC, Krauss RM, Nuttall FQ . Protein in optimal health: heart disease and type 2 diabetes. Am J Clin Nutr 2008; 87: 1571S–1575S.

    Article  CAS  Google Scholar 

  75. Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ . Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am J Clin Nutr 2011; 93: 997–1005.

    Article  CAS  Google Scholar 

  76. Tang JE, Phillips SM . Maximizing muscle protein anabolism: the role of protein quality. Curr Opin Clin Nutr Metab Care 2009; 12: 66–71.

    Article  CAS  Google Scholar 

  77. Groen BB, Res PT, Pennings B, Hertle E, Senden JM, Saris WH et al. Intragastric protein administration stimulates overnight muscle protein synthesis in elderly men. Am J Physiol Endocrinol Metab 2012; 302: E52–E60.

    Article  CAS  Google Scholar 

  78. Bortolotti M, Maiolo E, Corazza M, Van DE, Schneiter P, Boss A et al. Effects of a whey protein supplementation on intrahepatocellular lipids in obese female patients. Clin Nutr 2011; 30: 494–498.

    Article  CAS  Google Scholar 

  79. Mikkelsen PB, Toubro S, Astrup A . Effect of fat-reduced diets on 24-h energy expenditure: comparisons between animal protein, vegetable protein, and carbohydrate. Am J Clin Nutr 2000; 72: 1135–1141.

    Article  CAS  Google Scholar 

  80. Acheson KJ, Blondel-Lubrano A, Oguey-Araymon S, Beaumont M, Emady-Azar S, Ammon-Zufferey C et al. Protein choices targeting thermogenesis and metabolism. Am J Clin Nutr 2011; 93: 525–534.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K J Acheson.

Ethics declarations

Competing interests

KJA is an employee of Nestec Ltd., a subsidiary of Nestlé Ltd, which provides professional assistance, research and consulting services for food, dietary, dietetic and pharmaceutical products of interest to Nestlé Ltd. There is no conflict of interest concerning opinions presented in this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acheson, K. Diets for body weight control and health: the potential of changing the macronutrient composition. Eur J Clin Nutr 67, 462–466 (2013). https://doi.org/10.1038/ejcn.2012.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2012.194

Keywords

This article is cited by

Search

Quick links