Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N

Abstract

The bioreductive drug, AQ4N, is metabolized under hypoxic conditions and has been shown to enhance the antitumor effects of radiation and chemotherapy drugs. We have investigated the role of cytochrome P450 3A4 (CYP3A4) in increasing the metabolism of AQ4N using a gene-directed enzyme prodrug therapy (GDEPT) strategy. RIF-1 murine tumor cells were transfected with a mammalian expression vector containing CYP3A4 cDNA. In vitro AQ4N metabolism, DNA damage, and clonogenic cell kill were assessed following exposure of transfected and parental control cells to AQ4N. The presence of exogenous CYP3A4 increased the metabolism of AQ4N and significantly enhanced the ability of the drug to cause DNA strand breaks and clonogenic cell death. Cotransfection of CYP reductase with CYP3A4 showed a small enhancement of the effect in the DNA damage assay only. A single injection of CYP3A4 into established RIF-1 murine tumors increased the metabolism of AQ4N, and when used in combination with radiation, three of nine tumors were locally controlled for >60 days. This is the first demonstration that CYPs alone can be used in a GDEPT strategy for bioreduction of the cytotoxic prodrug, AQ4N. AQ4N is the only CYP-activated bioreductive agent in clinical trials. Combination with a GDEPT strategy may offer a further opportunity for targeting radiation-resistant and chemo-resistant hypoxic tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Greco O & Dachs GU . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol. 2001; 187: 22–36.

    Article  CAS  PubMed  Google Scholar 

  2. Verma IM & Somia N . Gene therapy — promises, problems and prospects. Nature. 1997; 389: 239–242.

    Article  CAS  PubMed  Google Scholar 

  3. Chen L & Waxman DJ . Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy. Cancer Res. 1995; 55: 581–589.

    CAS  PubMed  Google Scholar 

  4. Chen L, Waxman DJ, Chen D & Kufe DW . Sensitization of human breast cancer cells to cyclophosphamide and ifosfamide by transfer of a liver cytochrome P450 gene. Cancer Res. 1996; 56: 1331–1340.

    CAS  PubMed  Google Scholar 

  5. Kan O, Griffiths L & Baban D, et al. Direct retroviral delivery of human cytochrome P450 2B6 for gene-directed enzyme prodrug therapy of cancer. Cancer Gene Ther. 2001; 8: 473–482.

    Article  CAS  PubMed  Google Scholar 

  6. Griffiths L, Binley K & Iqball S, et al. The macrophage — a novel system to deliver gene therapy to pathological hypoxia. Gene Ther. 2000; 7: 255–262.

    Article  CAS  PubMed  Google Scholar 

  7. Jounaidi Y & Waxman DJ . Combination of the bioreductive drug tirapazamine with the chemotherapeutic prodrug cyclophosphamide for P450/P450-reductase–based cancer gene therapy. Cancer Res. 2000; 60: 3761–3769.

    CAS  PubMed  Google Scholar 

  8. Hejmadi MV, McKeown SR, Friery OP, McIntyre IA, Patterson LH & Hirst DG . DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells. Br J Cancer. 1996; 73: 499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patterson LH, McKeown SR & Ruparelia K, et al. Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent. Br J Cancer. 2000; 82: 1984–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hockel M & Vaupel P . Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001; 93: 266–276.

    Article  CAS  PubMed  Google Scholar 

  11. McKeown SR, Hejmadi MV, McIntyre IA, McAleer JJ & Patterson LH . AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo. Br J Cancer. 1995; 72: 76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McKeown SR, Friery OP, McIntyre IA, Hejmadi MV, Patterson LH & Hirst DG . Evidence for a therapeutic gain when AQ4N or tirapazamine is combined with radiation. Br J Cancer Suppl. 1996; 27: S39–S42.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Friery OP, Gallagher R & Murray MM, et al. Enhancement of the anti-tumour effect of cyclophosphamide by the bioreductive drugs AQ4N and tirapazamine. Br J Cancer. 2000; 82: 1469–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patterson LH & McKeown SR . AQ4N: a new approach to hypoxia-activated cancer chemotherapy. Br J Cancer. 2000; 83: 1589–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gallagher R, Hughes CM & Murray MM, et al. The chemopotentiation of cisplatin by the novel bioreductive drug AQ4N. Br J Cancer. 2001; 85: 625–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Smith PJ, Desnoyers R, Blunt N, Giles Y, Patterson LH & Watson JV . Flow cytometric analysis and confocal imaging of anticancer alkylaminoanthraquinones and their N-oxides in intact human cells using 647-nm krypton laser excitation. Cytometry. 1997; 27: 43–53.

    Article  CAS  PubMed  Google Scholar 

  17. Wilson WR, Denny WA & Pullen SM, et al. Tertiary amine N-oxides as bioreductive drugs: DACA N-oxide, nitracrine N-oxide and AQ4N. Br J Cancer Suppl. 1996; 27: S43–S47.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Patterson LH . Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Cancer Metastasis Rev. 1993; 12: 119–134.

    Article  CAS  PubMed  Google Scholar 

  19. Raleigh SM, Wanogho E, Burke MD & Patterson LH . Rat cytochromes P450 (CYP) specifically contribute to the reductive bioactivation of AQ4N, an alkylaminoanthraquinone-di-N-oxide anticancer prodrug. Xenobiotica. 1999; 29: 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  20. Raleigh SM, Wanogho E, Burke MD, McKeown SR & Patterson LH . Involvement of human cytochromes P450 (CYP) in the reductive metabolism of AQ4N, a hypoxia activated anthraquinone di-N-oxide prodrug. Int J Radiat Oncol Biol Phys. 1998; 42: 763–767.

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Yu LJ & Waxman DJ . Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Cancer Res. 1997; 57: 4830–4837.

    CAS  PubMed  Google Scholar 

  22. Ding S, Yao D, Burchell B, Wolf CR & Friedberg T . High levels of recombinant CYP3A4 expression in Chinese hamster ovary cells are modulated by coexpressed human P450 reductase and hemin supplementation. Arch Biochem Biophys. 1997; 348: 403–410.

    Article  CAS  PubMed  Google Scholar 

  23. Twentyman PR . Comparative chemosensitivity of exponential- versus plateau-phase cells in both in vitro model systems. Cancer Treat Rep. 1976; 60: 1719–1722.

    CAS  PubMed  Google Scholar 

  24. Singh NP, McCoy MT, Tice RR & Schneider EL . A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988; 175: 184–191.

    Article  CAS  PubMed  Google Scholar 

  25. McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, DeMeo MP & Collins A . The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res. 1993; 288: 47–63.

    Article  CAS  PubMed  Google Scholar 

  26. Swaine DJ, Loadman PM, Bibby MC, Graham MA & Patterson LH . High-performance liquid chromatographic analysis of AQ4N, an alkylaminoanthraquinone N-oxide. J Chromatogr B Biomed Sci Appl. 2000; 742: 239–245.

    Article  CAS  PubMed  Google Scholar 

  27. Clarke L & Waxman DJ . Oxidative metabolism of cyclophosphamide: identification of the hepatic monooxygenase catalysts of drug activation. Cancer Res. 1989; 49: 2344–2350.

    CAS  PubMed  Google Scholar 

  28. Weber GF & Waxman DJ . Activation of the anti-cancer drug ifosphamide by rat liver microsomal P450 enzymes. Biochem Pharmacol. 1993; 45: 1685–1694.

    Article  CAS  PubMed  Google Scholar 

  29. Brown JM . Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol Med Today. 2000; 6: 157–162.

    Article  CAS  PubMed  Google Scholar 

  30. Patterson LH, McKeown SR, Robson T, Gallagher R, Raleigh SM & Orr S . Antitumour prodrug development using cytochrome P450 (CYP) mediated activation. Anticancer Drug Des. 1999; 14: 473–486.

    CAS  PubMed  Google Scholar 

  31. Hejmadi MV, McKeown SR, Friery OP, McIntyre IA, Patterson LH & Hirst DG . DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells. Br J Cancer. 1996; 73: 499–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith PJ, Blunt NJ, Desnoyers R, Giles Y & Patterson LH . DNA topoisomerase II–dependent cytotoxicity of alkylaminoanthraquinones and their N-oxides. Cancer Chemother Pharmacol. 1997; 39: 455–461.

    Article  CAS  PubMed  Google Scholar 

  33. Huber BE, Austin EA, Richards CA, Davis ST & Good SS . Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA. 1994; 91: 8302–8306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mesnil M, Piccoli C, Tiraby G, Willecke K & Yamasaki H . Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA. 1996; 93: 1831–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Touraine RL, Ishii-Morita H, Ramsey WJ & Blaese RM . The bystander effect in the HSVtk/ganciclovir system and its relationship to gap junctional communication. Gene Ther. 1998; 5: 1705–1711.

    Article  CAS  PubMed  Google Scholar 

  36. Freeman SM, Abboud CN & Whartenby KA, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  37. Frank DK, Frederick MJ, Liu TJ & Clayman GL . Bystander effect in the adenovirus-mediated wild-type p53 gene therapy model of human squamous cell carcinoma of the head and neck. Clin Cancer Res. 1998; 4: 2521–2528.

    CAS  PubMed  Google Scholar 

  38. Massaad L, deWaziers I & Ribrag V, et al. Comparison of mouse and human colon tumors with regard to phase I and phase II drug-metabolizing enzyme systems. Cancer Res. 1992; 52: 6567–6575.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Cancer Research, UK (Grant no. SP2423/0101), for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Robson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, H., Yakkundi, A., McErlane, V. et al. Bioreductive GDEPT using cytochrome P450 3A4 in combination with AQ4N. Cancer Gene Ther 10, 40–48 (2003). https://doi.org/10.1038/sj.cgt.7700522

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700522

Keywords

This article is cited by

Search

Quick links