Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein

Abstract

Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Doloff JC, Waxman DJ . Adenoviral vectors for prodrug activation-based gene therapy for cancer. Anticancer Agents Med Chem 2014; 14: 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawrence TS, Rehemtulla A, Ng EY, Wilson M, Trosko JE, Stetson PL . Preferential cytotoxicity of cells transduced with cytosine deaminase compared to bystander cells after treatment with 5-flucytosine. Cancer Res 1998; 58: 2588–2593.

    CAS  PubMed  Google Scholar 

  3. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE . Enzyme/prodrug gene therapy: Comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 1995; 55: 4808–4812.

    CAS  PubMed  Google Scholar 

  4. Goblirsch M, Zwolak P, Ramnaraine ML, Pan W, Lynch C, Alaei P et al. Novel cytosine deaminase fusion gene enhances the effect of radiation on breast cancer in bone by reducing tumor burden, osteolysis, and skeletal fracture. Clin Cancer Res 2006; 12: 3168–3176.

    Article  CAS  PubMed  Google Scholar 

  5. Kaliberov SA, Markert JM, Gillespie GY, Krendelchtchikova V, Della Manna D, Sellers JC et al. Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma. Gene Ther 2007; 14: 1111–1119.

    Article  CAS  PubMed  Google Scholar 

  6. Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS et al. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res 1999; 59: 1417–1421.

    CAS  PubMed  Google Scholar 

  7. Liu Y, Ye T, Maynard J, Akbulut H, Deisseroth A . Engineering conditionally replication-competent adenoviral vectors carrying the cytosine deaminase gene increases the infectivity and therapeutic effect for breast cancer gene therapy. Cancer Gene Ther 2006; 13: 346–356.

    Article  CAS  PubMed  Google Scholar 

  8. Miller CR, Williams CR, Buchsbaum DJ, Gillespie GY . Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Res 2001; 62: 773–780.

    Google Scholar 

  9. Russell PJ, Kharti A . Novel gene-directed enzyme prodrug therapies against prostate cancer. Expert Opin Investig Drugs 2006; 15: 947–961.

    Article  CAS  PubMed  Google Scholar 

  10. Stackhouse MA, Pederson LC, Grizzle WE, Curiel DT, Gebert J, Haack K et al. Fractionated radiation therapy in combination with adenoviral delivery of the cytosine deaminase gene and 5-fluorocytosine enhances cytotoxic and antitumor effects in human colorectal and cholangiocarcinoma models. Gene Ther 2000; 7: 1019–1026.

    Article  CAS  PubMed  Google Scholar 

  11. Kong H, Tao L, Qi K, Wang Y, Li Q, Du J et al. Thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell apoptosis in breast cancer cells. Oncol Rep 2013; 30: 1209–1214.

    Article  CAS  PubMed  Google Scholar 

  12. Kaliberova LN, Della Manna DL, Krendelchtchikova V, Black ME, Buchsbaum DJ, Kaliberov SA . Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene. Mol Cancer Ther 2008; 7: 2845–2854.

    Article  CAS  PubMed  Google Scholar 

  13. Stolworthy TS, Korkegian AM, Willmon CL, Ardiani A, Cundiff J, Stoddard BL et al. Yeast cytosine deaminase mutants with increased thermostability impart sensitivity to 5-fluorocytosine. J Mol Biol 2008; 377: 854–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnson AJ, Ardiani A, Sanchez-Bonilla M, Black ME . Comparative analysis of enzyme and pathway engineering strategies for 5FC-mediated suicide gene therapy applications. Cancer Gene Ther 2011; 18: 533–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rogers BE, Parry JJ, Andrews R, Cordopatis P, Nock BA, Maina T . MicroPET imaging of gene transfer with a somatostatin receptor-based reporter gene and 94mTc-demotate 1. J Nucl Med 2005; 46: 1889–1897.

    CAS  PubMed  Google Scholar 

  16. Rogers BE, Zinn KR, Buchsbaum DJ . Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med 2000; 44: 208–223.

    CAS  PubMed  Google Scholar 

  17. Zinn KR, Buchsbaum DJ, Chaudhuri T, Mountz JM, Kirkman RL, Rogers BE . Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high affinity peptide radiolabeled with 99mTc or 188Re. J Nucl Med 2000; 41: 887–895.

    CAS  PubMed  Google Scholar 

  18. Zinn KR, Chaudhuri TR . The type 2 human somatostatin receptor as a platform for reporter gene imaging. Eur J Nucl Med 2002; 29: 388–399.

    Article  CAS  Google Scholar 

  19. Dmitriev IP, Kashentseva EA, Kim KH, Matthews QL, Krieger SS, Parry JJ et al. Monitoring of biodistribution and persistence of conditionally replicative adenovirus in a murine model of ovarian cancer using capsid-incorporated mCherry and expression of human somatostatin receptor subtype 2. Mol Imaging 2014; 13.

    Article  Google Scholar 

  20. Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C . Opportunities in somatostatin research: biological, chemical, and therapeutic aspects. Nat Rev Drug Discov 2003; 2: 999–1017.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers BE, Chaudhuri TR, Reynolds PN, Della Manna D, Zinn KR . Non-invasive gamma camera imaging of gene transfer using an adenoviral vector encoding an epitope tagged receptor as a reporter. Gene Ther 2003; 10: 105–114.

    Article  CAS  PubMed  Google Scholar 

  22. Rogers BE, McLean SF, Kirkman RL, Della Manna D, Bright SJ, Olsen CC et al. In vivo localization of [111In]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 1999; 5: 383–393.

    CAS  PubMed  Google Scholar 

  23. Achilefu S, Wilhelm RR, Jimenez HN, Schmidt MA, Srinivasan A . A new method for the synthesis of tri-tert-butyl diethylenetriaminepentaacetic acid and its derivatives. J Org Chem 2000; 65: 1562–1565.

    Article  CAS  PubMed  Google Scholar 

  24. Weisman GR, Wong EH, Hill DC, Rogers ME, Reed DP, Calabrese JC . Synthesis and transition metal complexes of new cross-bridged tetraamine ligands. J Chem Soc Chem Commun 1996: 947–948.

  25. Sprague JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S et al. Preparation and biological evaluation of copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 2004; 10: 8674–8682.

    Article  CAS  PubMed  Google Scholar 

  26. Wadas TJ, Anderson CJ . Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat Protoc 2007; 1: 3062–3068.

    Article  Google Scholar 

  27. Hatzoglou A, Ouafik L, Bakogeorgou E, Thermos K, Castanas E . Morphine cross-reacts with somatostatin receptor SSTR2 in the T47D human breast cancer cell line and decreases cell growth. Cancer Res 1995; 55: 5632–5636.

    CAS  PubMed  Google Scholar 

  28. Kharmate G, Rajput PS, Lin YC, Kumar U . Inhibition of tumor promoting signals by activation of SSTR2 and opioid receptors in human breast cancer cells. Cancer Cell Int 2013; 13: 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith-Jones PM, Bischof C, Leimer M, Gludovacz D, Angelberger P, Pangerl T et al. DOTA-lanreotide: a novel somatostatin analog for tumor diagnosis and therapy. Endocrinology 1999; 140: 5136–5148.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi M, Valdes G, Hiraoka K, Inagaki A, Kamijima S, Micewicz E et al. Radiosensitization of gliomas by intracellular generation of 5-fluorouracil potentiates prodrug activator gene therapy with a retroviral replicating vector. Cancer Gene Ther 2014; 21: 405–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Kale V, Chen M . Gene-directed enzyme prodrug therapy. AAPS J 2015; 17: 102–110.

    Article  CAS  PubMed  Google Scholar 

  32. Adachi Y, Tamiya T, Ichikawa T, Terada K, Ono Y, Matsumoto K et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther 2000; 11: 77–89.

    Article  CAS  PubMed  Google Scholar 

  33. Altaner C, Altanerova V, Cihova M, Ondicova K, Rychly B, Baciak L et al. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer 2014; 134: 1458–1465.

    Article  CAS  PubMed  Google Scholar 

  34. Aboagye EO, Artemov D, Senter PD, Bhujwalla ZM . Intratumoral conversion of 5-fluorocytosine to 5-fluorouracil by monoclonal antibody-cytosine deaminase conjugates: Noninvasive detection of prodrug activation by magnetic resonance spectroscopy and spectroscopic imaging. Cancer Res 1998; 58: 4075–4078.

    CAS  PubMed  Google Scholar 

  35. Gade TP, Koutcher JA, Spees WM, Beattie BJ, Ponomarev V, Doubrovin M et al. Imaging transgene activity in vivo. Cancer Res 2008; 68: 2878–2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamstra DA, Lee KC, Tychewicz JM, Schepkin VD, Moffat BA, Chen M et al. The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol Ther 2004; 10: 916–928.

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Penet MF, Wildes F, Takagi T, Chen Z, Winnard PT et al. Nanoplex delivery of siRNA and prodrug enzyme for multimodality image-guided molecular pathway targeted cancer therapy. ACS Nano 2010; 4: 6707–6716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Freytag SO, Barton KN, Brown SL, Narra V, Zhang Y, Tyson D et al. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Mol Ther 2007; 15: 1600–1606.

    Article  CAS  PubMed  Google Scholar 

  39. Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62: 4968–4976.

    CAS  PubMed  Google Scholar 

  40. Hackman T, Doubrovin M, Balatoni J, Beresten T, Ponomarev V, Beattie B et al. Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imaging 2002; 1: 36–42.

    Article  CAS  PubMed  Google Scholar 

  41. Xia K, Liang D, Tang A, Feng Y, Zhang J, Pan Q et al. A novel fusion suicide gene yeast CDglyTK plays a role in radio-gene therapy of nasopharyngeal carcinoma. Cancer Gene Ther 2004; 11: 790–796.

    Article  CAS  PubMed  Google Scholar 

  42. Zinn KR, Chaudhuri TR, Krasnykh VN, Buchsbaum DJ, Belousova N, Grizzle WE et al. Gamma camera dual imaging with a somatostatin receptor and thymidine kinase after gene transfer with a bicistronic adenovirus in mice. Radiology 2002; 223: 417–425.

    Article  CAS  PubMed  Google Scholar 

  43. Rivera JA, Alturaihi H, Kumar U . Differential regulation of somatostatin receptors 1 and 2 mRNA and protein expression by tamoxifen and estradiol in breast cancer cells. J Carcinog 2005; 4: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu Y, Song J, Berelowitz M, Bruno JF . Estrogen regulates somatostatin receptor subtype 2 messenger ribonucleic acid expression in human breast cancer cells. Endocrinology 1996; 137: 5634–5640.

    Article  CAS  PubMed  Google Scholar 

  45. Chen R, Parry JJ, Akers WJ, Berezin MY, El Naqa IM, Achilefu S et al. Multimodality imaging of gene transfer with a receptor-based reporter gene. J Nucl Med 2010; 51: 1456–1463.

    Article  CAS  PubMed  Google Scholar 

  46. Lohr F, Huang Q, Hu K, Dewhirst MW, Li CY . Systemic vector leakage and transgene expression by intratumorally injected recombinant adenovirus vectors. Clin Cancer Res 2001; 7: 3625–3628.

    CAS  PubMed  Google Scholar 

  47. Wang Y, Hu JK, Krol A, Li YP, Li CY, Yuan F . Systemic dissemination of viral vectors during intratumoral injection. Mol Cancer Ther 2003; 2: 1233–1242.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Radiation Oncology, Washington University School of Medicine and NIH grant R01 EB004533. We gratefully acknowledge Margaret Morris, Nicole Fettig, Lori Strong and Amanda Roth for performing the small animal imaging studies. Dr. Jeffrey Craft is thanked for his assistance in analysis of the imaging data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B E Rogers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lears, K., Parry, J., Andrews, R. et al. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein. Cancer Gene Ther 22, 215–221 (2015). https://doi.org/10.1038/cgt.2015.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.14

Search

Quick links