Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis

Subjects

Abstract

Reactive oxygen species (ROS) have a crucial role in melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24)-induced cancer cell apoptosis. However, cancer cell has a series of protective mechanisms to resist ROS damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates antioxidant response element (ARE)-mediated gene expression involved in cellular protection against oxidative stress. As the Nrf2 repressor, Kelch-like ECH-associated protein-1 (Keap1) sequesters Nrf2 in cytoplasm to block Nrf2 nuclear translocation. In the present study, administration of MDA-7/IL-24 by means of tumor-selective replicating adenovirus (ZD55-IL-24) was used to investigate whether ZD55-IL-24 could attenuate Nrf2-mediated oxidative stress response in cancer cell. We found that ZD55-IL-24 effectively strengthened the association between Nrf2 and Keap1 to restrict Nrf2 nuclear translocation, thereby inhibiting ARE-dependent transcriptional response. To evaluate the detailed mechanism underlying the suppression of ZD55-IL-24 on Nrf2-mediated oxidative stress response, we further tested three different mitogen-activated protein kinase (MAPK) signaling pathways in A549 and HeLa cells transfected by ZD55-IL-24. Our data showed that ZD55-IL-24 inhibited extracellular signal-regulated kinase (ERK) signal pathway but activated p38 and c-Jun-NH2-kinase (JNK) signal pathways to exert the tumor-specific apoptosis. Moreover, ERK pathway inhibitor U0126 prevented Nrf2 phosphorylation at Ser40 to retard Nrf2 nuclear translocation, thus decreasing antioxidant gene transcription. In contrast, p38 pathway inhibitor SB203580 obviously promoted the dissociation of Nrf2 from Keap1 to promote antioxidant gene transcription. However, JNK pathway had no effect on Nrf2 subcellular localization or the association of Nrf2 with Keap1. Conclusively, our results indicate that ZD55-IL-24 inhibits Nrf2-mediated oxidative stress response not only by activating p38 signal pathway to potentiate the association of Nrf2 and Keap1 but also by suppressing ERK signal pathway to postpone Nrf2 nuclear translocation. Given the ‘dark’ side of Nrf2 on carcinoma cell survival and chemoresistance, our study provides a novel explanation about MDA-7/IL-24-induced cancer-specific apoptosis and therapeutic sensitization through suppression of the cytoprotective system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB . Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995; 11: 2477–2486.

    CAS  PubMed  Google Scholar 

  2. Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR et al. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther 2003; 2: S23–S37.

    Article  CAS  PubMed  Google Scholar 

  3. Ellerhorst JA, Prieto VG, Ekmekcioglu S, Broemeling L, Yekell S, Chada S et al. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol 2002; 20: 1069–1074.

    Article  PubMed  Google Scholar 

  4. Mhashilkar AM, Schrock RD, Hindi M, Liao J, Sieger K, Kourouma F et al. Melanoma differentiation associated gene-7 (mda-7): a novel anti-tumor gene for cancer gene therapy. Mol Med 2001; 7: 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P et al. mda-7/IL-24: exploiting cancer's Achilles' heel. Mol Ther 2005; 11: 4–18.

    Article  CAS  PubMed  Google Scholar 

  6. Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D et al. Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci USA 2008; 105: 9763–9768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fisher PB . Is mda-7/IL-24 a ‘magic bullet’ for cancer? Cancer Res 2005; 65: 10128–10138.

    Article  CAS  PubMed  Google Scholar 

  8. Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK et al. The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 2010; 128: 375–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yacoub A, Mitchell C, Hong Y, Gopalkrishnan RV, Su ZZ, Gupta P et al. MDA-7 regulates cell growth and radiosensitivity in vitro of primary (non-established) human glioma cells. Cancer Biol Ther 2004; 3: 739–751.

    Article  CAS  PubMed  Google Scholar 

  10. Burhans WC, Weinberger M . DNA replication stress, genome instability and aging. Nucleic Acids Res 35: 7545–7556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK . Oxidative stress in prostate cancer. Cancer Lett 2009; 282: 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pool-Zobel B, Veeriah S, Bohmer FD . Modulation of xenobiotic metabolising enzymes by anticarcinogens – focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res 2005; 591: 74–92.

    Article  CAS  PubMed  Google Scholar 

  13. Barve A, Khor TO, Nair S, Reuhl K, Suh N, Reddy B et al. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 2009; 124: 1693–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumaraguruparan R, Seshagiri PB, Hara Y, Nagini S . Chemoprevention of rat mammary carcinogenesis by black tea polyphenols: modulation of xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation, apoptosis, and angiogenesis. Mol Carcinog 2007; 46: 797–806.

    Article  CAS  PubMed  Google Scholar 

  15. Lee SB, Kim CY, Lee HJ, Yun JH, Nho CW . Induction of the phase II detoxification enzyme NQO1 in hepatocarcinoma cells by lignans from the fruit of Schisandra chinensis through nuclear accumulation of Nrf2. Planta Med 2009; 75: 1314–1318.

    Article  CAS  PubMed  Google Scholar 

  16. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 2002; 99: 11908–11913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan K, Han XD, Kan YW . An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 2001; 98: 4611–4616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi M, Yamamoto M . Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 2005; 7: 385–394.

    Article  CAS  PubMed  Google Scholar 

  19. Zipper LM, Mulcahy RT . The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem 2002; 277: 36544–36552.

    Article  CAS  PubMed  Google Scholar 

  20. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 2004; 101: 2040–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bloom DA, Jaiswal AK . Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 2003; 278: 44675–44682.

    Article  CAS  PubMed  Google Scholar 

  22. Huang HC, Nguyen T, Pickett CB . Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 2002; 277: 42769–42774.

    Article  CAS  PubMed  Google Scholar 

  23. McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD . Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a ‘tethering’ mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J Biol Chem 2006; 281: 24756–24768.

    Article  CAS  PubMed  Google Scholar 

  24. Song MO, Lee CH, Yang HO, Freedman JH . Endosulfan upregulates AP-1 binding and ARE-mediated transcription via ERK1/2 and p38 activation in HepG2 cells. Toxicology 2012; 292: 23–32.

    Article  CAS  PubMed  Google Scholar 

  25. Kachadourian R, Pugazhenthi S, Velmurugan K, Backos DS, Franklin CC, McCord JM et al. 2',5'-Dihydroxychalcone-induced glutathione is mediated by oxidative stress and kinase signaling pathways. Free Radical Biol Med 2011; 51: 1146–1154.

    Article  CAS  Google Scholar 

  26. Choi BM, Kim SM, Park TK, Li G, Hong SJ, Park R et al. Piperine protects cisplatin-induced apoptosis via heme oxygenase-1 induction in auditory cells. J Nutr Biochem 2007; 18: 615–622.

    Article  CAS  PubMed  Google Scholar 

  27. Junttila MR, Li SP, Westermarck J . Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 2008; 22: 954–965.

    Article  CAS  PubMed  Google Scholar 

  28. Swantek JL, Cobb MH, Geppert TD . Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is required for lipopolysaccharide stimulation of tumor necrosis factor alpha (TNF-alpha) translation: glucocorticoids inhibit TNF-alpha translation by blocking JNK/SAPK. Mol Cell Biol 1997; 17: 6274–6282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roux PP, Blenis J . ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004; 68: 320–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yacoub A, Gupta P, Park MA, Rhamani M, Hamed H, Hanna D et al. Regulation of GST-MDA-7 toxicity in human glioblastoma cells by ERBB1, ERK1/2, PI3K, and JNK1-3 pathway signaling. Mol Cancer Ther 2008; 7: 314–329.

    Article  CAS  PubMed  Google Scholar 

  31. Yacoub A, Mitchell C, Lebedeva IV, Sarkar D, Su ZZ, McKinstry R et al. mda-7 (IL-24) Inhibits growth and enhances radiosensitivity of glioma cells in vitro via JNK signaling. Cancer Biol Ther 2003; 2: 347–353.

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar D, Su ZZ, Lebedeva IV, Sauane M, Gopalkrishnan RV, Valerie K et al. mda-7 (IL-24) Mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci USA 2002; 99: 10054–10059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian H, Qian GW, Li W, Chen FF, Di JH, Zhang BF et al. A critical role of Sp1 transcription factor in regulating the human Ki-67 gene expression. Tumour Biol 2011; 32: 273–283.

    Article  CAS  PubMed  Google Scholar 

  34. Lebedeva IV, Su ZZ, Sarkar D, Kitada S, Dent P, Waxman S et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Res 2003; 63: 8138–8144.

    CAS  PubMed  Google Scholar 

  35. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008; 29: 1235–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD . Dual roles of Nrf2 in cancer. Pharmacol Res 2008; 58: 262–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kensler TW, Wakabayashi N . Nrf2: friend or foe for chemoprevention? Carcinogenesis 2010; 31: 90–99.

    Article  CAS  PubMed  Google Scholar 

  38. Yacoub A, Park MA, Gupta P, Rahmani M, Zhang G, Hamed H et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther 2008; 7: 297–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun Z, Huang Z, Zhang DD . Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS ONE 2009; 4: e6588.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shi X, Zhou B . The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci 2010; 115: 391–400.

    Article  CAS  PubMed  Google Scholar 

  41. Park EJ, Kim YM, Park SW, Kim HJ, Lee JH, Lee DU et al. Induction of HO-1 through p38 MAPK/Nrf2 signaling pathway by ethanol extract of Inula helenium L. reduces inflammation in LPS-activated RAW 264.7 cells and CLP-induced septic mice. Food Chem Toxicol 2013; 55: 386–395.

    Article  CAS  PubMed  Google Scholar 

  42. Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C et al. Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res 2006; 66: 8804–8813.

    Article  CAS  PubMed  Google Scholar 

  43. Zipper LM, Mulcahy RT . Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in HepG2 cells. Toxicol Sci 2003; 73: 124–134.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 81202144 and 81202015); Jiangsu Provincial Office of Education Foundation (JHB2012-34); Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (13KJB320028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Zhang, D., Gao, Z. et al. MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis. Cancer Gene Ther 21, 416–426 (2014). https://doi.org/10.1038/cgt.2014.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.45

This article is cited by

Search

Quick links