Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparative antitumor effect among GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell vaccines

Abstract

Genetically modified cells have been shown to be one of the most effective cancer vaccine strategies. An evaluation is made of the efficacy of both preventive and therapeutic antitumor vaccines against murine melanoma, using C57BL/6 mice and irradiated B16 tumor cells expressing granulocyte and macrophage colony-stimulating factor (GM-CSF), interleukin-12 (IL-12) or both. Tumor was transplanted by the injection of wild-type B16 cells. Tumor growth and survival were measured to evaluate the efficacy of vaccination. Specific humoral response and immunoglobulin G (IgG) switch were evaluated measuring total IgG and IgG1 and IgG2a subtypes against tumor membrane proteins of B16 cells. In preventive vaccination, all treated groups showed delayed tumor growth. In addition, the group vaccinated to express only GM-CSF achieved 100% animal survival (P<0.005). Vaccination with GM-CSF+IL-12-producing B16 cells yielded lesser results (60% survival, P<0.005). Furthermore, all surviving animals remained disease-free after second tumor implantation 1 year later. The therapeutic vaccination strategies resulted in significantly delayed tumor growth, mainly using B16 cells producing GM-CSF+IL-12 cytokines, with 70% tumor growth inhibition (P<0.001)—although none of the animals reached overall survival. The results obtained suggest that the GM-CSF+IL-12 combination only increases the efficacy of therapeutic vaccines. No differences in classical regulatory T cells were found among the different groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nagai H, Oniki S, Fujiwara S, Yoshimoto T, Nishigori C . Antimelanoma immunotherapy: clinical and preclinical applications of IL-12 family members. Immunotherapy 2010; 2: 697–709.

    Article  CAS  Google Scholar 

  2. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM . Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 1998; 91: 222–230.

    CAS  PubMed  Google Scholar 

  3. Nemunaitis J, Sterman D, Jablons D, Smith JW 2nd, Fox B, Maples P et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 2004: 326–331.

    Article  CAS  Google Scholar 

  4. Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry WT Jr. . Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J Immunother 2012; 35: 385–389.

    Article  CAS  Google Scholar 

  5. Zhang X, Shi X, Li J, Hu Z, Zhou D, Gao J et al. A novel therapeutic vaccine of mouse GM-CSF surface modified MB49 cells against metastatic bladder cancer. J Urol 2012; 187: 1071–1079.

    Article  CAS  Google Scholar 

  6. Moret-Tatay I, Diaz J, Marco FM, Crespo A, Aliño SF . Complete tumor prevention by engineered tumor cell vaccines employing nonviral vectors. Cancer Gene therapy 2003; 10: 887–897.

    Article  CAS  Google Scholar 

  7. Herrero MJ, Botella R, Dasí F, Agás R, Sánchez M, Aliño SF . Antigens and cytokine genes in antitumor vaccines: the importance of the temporal delivery sequence in antitumor signals. Ann NY Acad Sci 2006; 1091: 412–424.

    Article  CAS  Google Scholar 

  8. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21: 3343–3350.

    Article  CAS  Google Scholar 

  9. Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003; 21: 624–630.

    Article  Google Scholar 

  10. Olivares J, Kumar P, Yu Y, Maples PB, Senzer N, Bedell C et al. Phase I trial of TGF-{beta}2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine. Clin Cancer Res 2011; 17: 183–192.

    Article  CAS  Google Scholar 

  11. Small EJ, Sacks N, Nemunaitis J, Urba WJ, Dula E, Centeno AS et al. Granulocyte macrophage colony-stimulating factor-secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res 2007; 13: 3883–3891.

    Article  CAS  Google Scholar 

  12. Maio M, Fonsatti E, Lamaj E, Altomonte M, Cattarossi I, Santantonio C et al. Vaccination of stage IV patients with allogeneic IL-4- or IL-2-gene-transduced melanoma cells generates functional antibodies against vaccinating and autologous melanoma cells. Cancer Immunol Immunother 2002; 51: 9–14.

    Article  CAS  Google Scholar 

  13. Borrello I, Pardoll D . GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev 2002; 13: 185–193.

    Article  CAS  Google Scholar 

  14. Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 2001; 12: 671–684.

    Article  CAS  Google Scholar 

  15. Parney IF, Farr-Jones MA, Kane K, Chang LJ, Petruk KC . Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF and IL-12. Can J Neurol Sci 2002; 29: 267–275.

    Article  Google Scholar 

  16. Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J et al. Intratumoral injection of DNA encoding human interleukin-12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 2005; 16: 35–48.

    Article  CAS  Google Scholar 

  17. Triozzi PI, Strong TV, Bucy RP, Allen KO, Carlisle RR, Moore SE et al. Intratumoral administration of a recombinant Canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum Gene Ther 2005; 16: 91–100.

    Article  CAS  Google Scholar 

  18. Sangro B, Melero I, Qian C, Prieto J . Gene therapy of cancer based on interleukin 12. Curr Gene Ther 2005; 5: 573–581.

    Article  CAS  Google Scholar 

  19. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896–5903.

    Article  CAS  Google Scholar 

  20. Nair RE, Jong YS, Jones SA, Sharma A, Mathiowitz E, Egilmez NK . IL-12+GM-CSF microsphere therapy induces eradication of advanced spontaneous tumors in her-2/neu transgenic mice but fails to achieve long-term cure due to the inability to maintain effector T-cell activity. J Immunother 2006; 29: 10–20.

    Article  CAS  Google Scholar 

  21. Choi KJ, Zhang SN, Choi IK, Kim JS, Yun CO . Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther 2012; 19: 711–723.

    Article  CAS  Google Scholar 

  22. Chang CJ, Chen YH, Huang KW, Cheng HW, Chan SF, Tai KF et al. Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology 2007; 45: 746–754.

    Article  CAS  Google Scholar 

  23. Wang Z, Qiu SJ, Ye SL, Tang ZY, Xiao X . Combined IL-12 and GM-CSF gene therapy for murine hepatocellular carcinoma. Cancer Gene Ther 2001; 8: 751–758.

    Article  CAS  Google Scholar 

  24. Qiu S, Ye S, Wang Z, Tang Z, Lu L, Xiao X . Study on the effects of combined IL-12 and GM-CSF gene therapy for murine liver cancer. Zhonghua Gan Zang Bing Za Zhi 2002; 10: 413–416.

    CAS  PubMed  Google Scholar 

  25. Shi FS, Weber S, Gan J, Rakhmilevich AL, Mahvi DM . Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF. Cancer Gene Ther 1999; 6: 81–88.

    Article  CAS  Google Scholar 

  26. Guillem VM, Aliño SF . Transfection pathways of nonspecific and targeted PEI-polyplexes. Gene Ther Mol Biol 2004; 8: 369–384.

    Google Scholar 

  27. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I . High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 2004; 64: 6337–6343.

    Article  CAS  Google Scholar 

  28. Bordier C . Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 1981; 25: 1604–1607.

    Google Scholar 

  29. Terando AM, Faries MB, Morton DL . Vaccine therapy for melanoma: current status and future directions. Vaccine 2007; 25: B4–B16.

    Article  CAS  Google Scholar 

  30. Zou W . Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    Article  CAS  Google Scholar 

  31. De Visser K, Eichten A, Coussens L . Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6: 24–37.

    Article  CAS  Google Scholar 

  32. Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M et al. In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with IL-12 gene transfer. Exp Dermatol 2004; 13: 613–620.

    Article  CAS  Google Scholar 

  33. Rech AJ, Vonderheide RH . Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 2009; 1174: 99–106.

    Article  CAS  Google Scholar 

  34. Rech AJ, Mick R, Martin S, Recio A, Aqui NA, Powell DJ Jr et al. CD25 Blockade depletes and selectively reprograms regulatory T cells in concert with inmunotherapy in cancer patients. Sci Transl Med 2012; 4 134ra62.

    Article  Google Scholar 

  35. Leach DR, Krummel MF, Allison JP . Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736.

    Article  CAS  Google Scholar 

  36. Ascierto PA, Marincola FM, Ribas A . Anti-CTLA4 monoclonal antibodies: the past and the future in clinical application. J Transl Med 2011; 9: 196.

    Article  CAS  Google Scholar 

  37. Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant JC, Ménégaux F et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 2009; 58: 520–529.

    Article  CAS  Google Scholar 

  38. Frey AB . Myeloid supresor cells regulate the adaptive immune response to cancer. J Clin Invest 2006; 116: 2587–2590.

    Article  CAS  Google Scholar 

  39. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M et al. Identification of a new subset of myeloid supresor cells in Peripherals blood of melanoma patients with modulation by a GM-CSF-based antitumor vaccine. J Clin Oncol 2007; 25: 2546–2553.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by FIS PI 021740 and SAF 2011-27002. We thank the central unit of research of the Faculty of Medicine of the University of Valencia for granted technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M J Herrero or S F Aliño.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

All material presented in this paper is original research and has not been published before.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miguel, A., Herrero, M., Sendra, L. et al. Comparative antitumor effect among GM-CSF, IL-12 and GM-CSF+IL-12 genetically modified tumor cell vaccines. Cancer Gene Ther 20, 576–581 (2013). https://doi.org/10.1038/cgt.2013.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.54

Keywords

Search

Quick links