Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy

Abstract

We have isolated and characterized a novel variant of the replication-competent oncolytic HSV1716 that expresses inhibitor of growth 4 (Ing4) (HSV1716Ing4). We demonstrate that Ing4 expression enhances progeny output during HSV1716 infection of human tumor cells both in vitro and in vivo, thereby significantly augmenting its oncolytic potency. In tissue culture, compared with HSV1716, HSV1716Ing4 produced significantly higher numbers of infectious progeny in human squamous cell carcinoma (SCC), breast, ovarian, prostate and colorectal cancer cell lines. Immediate-early expression of Ing4 was crucial for this effect and an intact Ing4 was required as there was no enhanced progeny production with HSV1716 variants that expressed Ing4 mutants lacking the C-terminal plant homeodomain domain or conserved nuclear localization signals. In mouse xenograft models of SCC, ovarian and breast cancer, HSV1716Ing4 was significantly more efficacious than HSV1716 with at least 1000-fold more infectious virus found in tumors after HSV1716Ing4 treatment compared with tumors from HSV1716 treatment. Using a sensitive herpes simplex virus type 1 (HSV-1) PCR, virus DNA was only detected in tumors and was not detected in the DNA extracted from any organs of the injected mice demonstrating that, like HSV1716, HSV1716Ing4 replication is exclusively restricted to tumor cells. Our results suggest that the potential for enhanced tumor destruction by oncolytic HSV expressing Ing4 merits clinical investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Soliman MA, Riabowol K . After a decade of study-ING, a PHD for a versatile family of proteins. Trends Biochem Sci 2007; 32: 509–519.

    Article  CAS  PubMed  Google Scholar 

  2. Russell M, Berardi P, Gong W, Riabowol K . Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis. Exp Cell Res 2006; 312: 951–961.

    Article  CAS  PubMed  Google Scholar 

  3. Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M et al. Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene 2005; 356: 109–117.

    Article  CAS  PubMed  Google Scholar 

  4. Kim S, Chin K, Gray JW, Bishop JM . A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer. Proc Natl Acad Sci USA 2004; 101: 16251–16256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li J, Martinka M, Li G . Role of ING4 in human melanoma cell migration, invasion and patient survival. Carcinogenesis 2008; 29: 1373–1379.

    Article  PubMed  Google Scholar 

  6. Garkavtsev I, Kozin SV, Chernova L, Xu L, Winkler F, Brown E et al. The candidate tumor suppressor protein ING4 regulates brain tumor growth and angiogenesis. Nature 2004; 428: 328–332.

    Article  CAS  PubMed  Google Scholar 

  7. Xie Y, Zhang H, Sheng W, Xiang J, Ye Z, Yang J . Adenovirus-mediated ING4 expression suppresses lung carcinoma cell growth via induction of cell cycle alteration and apoptosis and inhibition of tumor invasion and angiogenesis. Cancer Lett 2008; 271: 105–116.

    Article  CAS  PubMed  Google Scholar 

  8. Xie YF, Sheng W, Xiang J, Zhang H, Ye Z, Yang J . Adenovirus-mediated ING4 expression suppresses pancreatic carcinoma cell growth via induction of cell-cycle alteration, apoptosis, and inhibition of tumor angiogenesis. Cancer Biother Radiopharm 2009; 24: 261–269.

    Article  CAS  PubMed  Google Scholar 

  9. Yang HC, Sheng WH, Xie YF, Miao JC, Wei WX, Yang JC . In vitro and in vivo inhibitory effect of Ad-ING4 gene on proliferation of human prostate cancer PC-3 cells. Chin J Cancer 2009; 28: 27–34.

    Google Scholar 

  10. Li Z, Xie Y, Sheng W, Miao J, Xiang J, Yang J . Tumor-suppressive effect of adenovirus-mediated inhibitor of growth 4 gene transfer in breast carcinoma cells in vitro and in vivo. Cancer Biother Radiopharm 2010; 4: 427–437.

    Article  Google Scholar 

  11. Unoki M, Kumamoto K, Takenoshita S, Harris CC . Reviewing the current classification of inhibitor of growth family proteins. Cancer Sci 2009; 100: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  12. MacLean AR, Fareed MU, Robertson L, Harland J, Brown SM . Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 1991; 72: 631–639.

    Article  CAS  PubMed  Google Scholar 

  13. Brown SM, Harland J, MacLean AR, Podlech J, Clements JB . Cell type and cell state determine differentiated in vitro growth of non-neuroviulent ICP34.5-negative herpes simplex virus. J Gen Virol 1994; 75: 2367–2377.

    Article  CAS  PubMed  Google Scholar 

  14. Brown SM, MacLean AR, McKie EA, Harland J . The herpes simplex virus virulence factor ICP34.5 and the cellular protein MyD116 complex with proliferating cell nuclear antigen through the 63-amino acid domain conserved in ICP34.5, MyD116 and GADD34. J Virol 1997; 71: 9442–9449.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Harland J, Dunn P, Cameron E, Conner J, Brown SM . The herpes simplex virus (HSV) protein ICP34.5 is a virion component that forms a DNA-binding complex with proliferating cell nuclear antigen and HSV replication proteins. J Neurovirol 2003; 9: 477–488.

    Article  CAS  PubMed  Google Scholar 

  16. Rampling R, Cruikshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  17. Papanastassiou V, Rampling R, Fraser M, Petty R, Hadley D, Nicoll J et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoral injection into human malignant glioma: a proof of principle study. Gene Ther 2002; 9: 398–406.

    Article  CAS  PubMed  Google Scholar 

  18. Harrow S, Papanastassiou V, Harland J, Mabbs R, Petty R, Fraser M et al. HSV1716 injection into the brain adjacent to tumor following surgical resection of high-grade glioma: safety data and long term survival. Gene Ther 2004; 11: 1648–1658.

    Article  CAS  PubMed  Google Scholar 

  19. MacKie RM, Stewart B, Brown SM . Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 2001; 357: 525–526.

    Article  CAS  PubMed  Google Scholar 

  20. Mace ATM, Ganly I, Soutar DS, Brown SM . Potential for efficacy of the oncolytic herpes simplex virus 1716 in patients with oral squamous cell carcinoma. Head Neck 2008; 30: 1045–1051.

    Article  PubMed  Google Scholar 

  21. Korozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A et al. Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 2008; 16: 1382–1391.

    Article  Google Scholar 

  22. Liu T-C, Zhang T, Fukuhara H, Kuroda T, Todo T, Martuza RL et al. Oncolytic HSV armed with Platelet Factor 4, an antiangiogenic agent, shows enhanced efficacy. Mol Ther 2006; 14: 789–797.

    Article  CAS  PubMed  Google Scholar 

  23. Mullen JT, Donahue JM, Chandrasekhar S, Yoon SS, Liu W, Ellis LM et al. Oncolysis by viral replication and inhibition of angiogenesis by a replication-conditional herpes simplex virus that expresses mouse endostatin. Cancer 2004; 101: 869–877.

    Article  CAS  PubMed  Google Scholar 

  24. Wong RJ, Chan M-K, Yu Z, Ghossein RA, Ngai I, Adusumill PS et al. Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 2004; 10: 4509–4516.

    Article  CAS  PubMed  Google Scholar 

  25. Conner J, Rixon FJ, Brown SM . Herpes simplex virus type 1 strain HSV1716 grown in baby hamster kidney cells has altered tropism for nonpermissive Chinese hamster ovary cells compared to HSV1716 grown in Vero cells. J Virol 2005; 79: 9970–9981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conner J, Braidwood L, Brown SM . A strategy for systemic delivery of the oncolytic herpes virus HSV1716: redirected tropism by antibody-binding sites incorporated on the virion surface as a glycoprotein D fusion protein. Gene Ther 2008; 15: 1579–1159.

    Article  CAS  PubMed  Google Scholar 

  27. Schellingerhout D, Rainov NG, Breakefield XO, Weissleder R . Quantitation of HSV mass distribution in a rodent brain tumor model. Gene Ther 2000; 7: 1648–1655.

    Article  CAS  PubMed  Google Scholar 

  28. Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W et al. ING tumour suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 2006; 21: 51–64.

    Article  CAS  PubMed  Google Scholar 

  29. Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 2003; 114: 99–111.

    Article  CAS  PubMed  Google Scholar 

  30. Pedeux R, Sengupta S, Shen JC, Demidov ON, Saito S, Onogi H et al. ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol Cell Biol 2005; 25: 6639–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S et al. P29ING4 and p28ING5 bind to p53 and p300 and enhance p53 activity. Cancer Res 2003; 63: 2373–2378.

    CAS  PubMed  Google Scholar 

  32. Shen JC, Unoki M, Ythier D, Duperray A, Varticovski L, Kumamoto K et al. Inhibitor of growth-4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha 1. Cancer Res 2007; 67: 2552–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ozer A, Wu LC, Bruick RK . The candidate tumour suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA 2005; 102: 7481–7486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Otsuki A, Patel A, Kasai K, Suzuki M, Kurozumi K, Chiocca EA et al. Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses. Mol Ther 2008; 16: 1546–1555.

    Article  CAS  PubMed  Google Scholar 

  35. Unterholzner L, Bowie AG . The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem Pharmacol 2008; 75: 589–602.

    Article  CAS  PubMed  Google Scholar 

  36. Seth RB, Sun L, Chen ZJ . Antiviral innate immunity pathways. Cell Res 2006; 16: 1410147.

    Article  Google Scholar 

  37. Hiscott J, Nguyen T-LA, Arguello M, Nakhaei P, Paz S . Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene 2006; 25: 6844–6867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nozell S, Laver T, Moseley D, Nowoslawski L, DeVos M, Atkinson GP et al. The ING4 tumor suppressor attenuates NF-κB activity at the promoters of target genes. Mol Cell Biol 2008; 28: 6632–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel A, Hanson J, McLean TI, Olgiate J, Hilton M, Miller WE et al. Herpes simplex virus type 1 induction of persistent NF-κB nuclear translocation increases the efficiency of virus replication. Virology 1998; 247: 212–222.

    Article  CAS  PubMed  Google Scholar 

  40. Gregory D, Hargett D, Holmes D, Money E, Bachenheimer SL . Efficient replication by herpes simplex virus involves activation of I(kappa)B-kinase-I(kappa)B-p65 pathway. J Virol 2004; 78: 13582–13590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yedowitz JC, Blaho JA . Herpes simplex virus type 2 modulates apoptosis and stimulates NF-kappaB nuclear translocation during infection in human epithelial Hep-2 cells. Virology 2005; 342: 297–310.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Xu L-S, Wang Z-Q, Wang K-S, Li N, Cheng Z-H et al. ING4 induces G2/M cell cycle arrest and enhances the chemosensitivity to DNA-damage agents in HepG2 cells. FEBS Lett 2005; 570: 7–12.

    Article  Google Scholar 

  43. Zachos G, Koffa M, Preston CM, Clements JB, Conner J . Herpes simplex virus type 1 blocks the apoptotic host cell defence mechanisms that target Bcl-2 and manipulates activation of p38 mitogen-activated protein kinase to improve virus replication. J Virol 2001; 75: 2710–2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang J, Kent JR, Placek B, Whelan KA, Hollow CH, Zeng P-Y et al. Trimethylation of histone H3 lysine 4 by Set1 in the lytic infection of human herpes simplex virus 1. J Virol 2006; 80: 5740–5746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oh J, Fraser NW . Temporal association of the herpes simplex genome with histone proteins during the lytic infection. J Virol 2008; 82: 3530–3537.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Conner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conner, J., Braidwood, L. Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy. Cancer Gene Ther 19, 499–507 (2012). https://doi.org/10.1038/cgt.2012.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.24

Keywords

This article is cited by

Search

Quick links