Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SV40 T/t-common polypeptide inhibits angiogenesis and growth of HER2-overexpressing human ovarian cancer

Abstract

Human epidermal growth factor receptor 2 (HER2) is frequently overexpressed in human ovarian cancers and its overexpression is associated with increased angiogenesis, increased metastasis and reduced survival. Inhibition of HER2 in HER2-overexpressing cancers can lead to reduced angiogenesis and improved survival. Previously, we reported that SV40 T/t-common polypeptide has transcriptional repression activity and can inhibit HER2 expression. In this study, we investigated the effect of T/t-common on the angiogenesis-inducing activity of HER2-overexpressing human SK-OV-3 ovarian cancer cells. We found that compared to conditioned medium from control SK-OV-3 cancer cells, conditioned medium from T/t-common-expressing SK-OV-3 cells had a reduced ability to induce endothelial cell migration and tube formation in vitro and microvessel formation in vivo. These data indicate that T/t-common can inhibit the ability of SK-OV-3 cancer cells to induce angiogenesis. T/t-common was found to be able to downregulate the expression of several proangiogenic factors, including vascular endothelial growth factor-A, interleukin-8, basic fibroblast growth factor, matrix metalloproteinase-2 and urokinase-type plasminogen activator, and upregulate antiangiogenic factors, including thrombospondin-1 and tissue inhibitor of metalloproteinases-1 in SK-OV-3 cancer cells. Finally, we demonstrated that T/t-common could inhibit the angiogenesis and growth of HER2-overexpressing human ovarian tumor in NOD/SCID mice. Taken together, the data suggest that T/t-common had the potential to be developed as a new antiangiogenic agent specific for treating HER2-overexpressing ovarian cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Holbro T, Hynes NE . ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 2004; 44: 195–217.

    Article  CAS  Google Scholar 

  2. Marmor MD, Skaria KB, Yarden Y . Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 2004; 58: 903–913.

    Article  CAS  Google Scholar 

  3. Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15: 2452–2467.

    Article  CAS  Google Scholar 

  4. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  5. Hynes NE, Stern DF . The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim Biophys Acta 1994; 1198: 165–184.

    PubMed  Google Scholar 

  6. Worthylake R, Opresko LK, Wiley HS . ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 1999; 274: 8865–8874.

    Article  CAS  Google Scholar 

  7. Siegel PM, Ryan ED, Cardiff RD, Muller WJ . Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 1999; 18: 2149–2164.

    Article  CAS  Google Scholar 

  8. Muthuswamy SK, Gilman M, Brugge JS . Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 1999; 19: 6845–6857.

    Article  CAS  Google Scholar 

  9. Wen XF, Yang G, Mao W, Thornton A, Liu J, Bast Jr RC et al. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene 2006; 25: 6986–6996.

    Article  CAS  Google Scholar 

  10. Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC . c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 1994; 54: 3260–3266.

    CAS  PubMed  Google Scholar 

  11. Tsai CM, Chang KT, Perng RP, Mitsudomi T, Chen MH, Kadoyama C et al. Correlation of intrinsic chemoresistance of non-small-cell lung cancer cell lines with HER-2/neu gene expression but not with ras gene mutations. J Natl Cancer Inst 1993; 85: 897–901.

    Article  CAS  Google Scholar 

  12. Iruela-Arispe ML, Dvorak HF . Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 1997; 78: 672–677.

    Article  CAS  Google Scholar 

  13. Folkman J . Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29: 15–18.

    Article  CAS  Google Scholar 

  14. Holmes K, Roberts OL, Thomas AM, Cross MJ . Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 2007; 19: 2003–2012.

    Article  CAS  Google Scholar 

  15. Potgens AJ, van Altena MC, Lubsen NH, Ruiter DJ, de Waal RM . Analysis of the tumor vasculature and metastatic behavior of xenografts of human melanoma cell lines transfected with vascular permeability factor. Am J Pathol 1996; 148: 1203–1217.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gasparini G, Toi M, Gion M, Verderio P, Dittadi R, Hanatani M et al. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J Natl Cancer Inst 1997; 89: 139–147.

    Article  CAS  Google Scholar 

  17. Li D, Williams JI, Pietras RJ . Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression. Oncogene 2002; 21: 2805–2814.

    Article  CAS  Google Scholar 

  18. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL . HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21: 3995–4004.

    Article  CAS  Google Scholar 

  19. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP . CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 1997; 138: 707–717.

    Article  CAS  Google Scholar 

  20. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N . Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000; 6: 41–48.

    Article  CAS  Google Scholar 

  21. Ren B, Yee KO, Lawler J, Khosravi-Far R . Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 2006; 1765: 178–188.

    CAS  PubMed  Google Scholar 

  22. Serrano-Olvera A, Duenas-Gonzalez A, Gallardo-Rincon D, Candelaria M, De la Garza-Salazar J . Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer. Cancer Treat Rev 2006; 32: 180–190.

    Article  CAS  Google Scholar 

  23. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990; 50: 4087–4091.

    CAS  PubMed  Google Scholar 

  24. Yap TA, Carden CP, Kaye SB . Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 2009; 9: 167–181.

    Article  CAS  Google Scholar 

  25. Blagden S, Gabra H . Promising molecular targets in ovarian cancer. Curr Opin Oncol 2009; 21: 412–419.

    Article  Google Scholar 

  26. Yen L, You XL, Al Moustafa AE, Batist G, Hynes NE, Mader S et al. Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 2000; 19: 3460–3469.

    Article  CAS  Google Scholar 

  27. Yang G, Cai KQ, Thompson-Lanza JA, Bast Jr RC, Liu J . Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem 2004; 279: 4339–4345.

    Article  CAS  Google Scholar 

  28. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK . Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 2002; 416: 279–280.

    Article  CAS  Google Scholar 

  29. Wang WB, Bikel I, Marsilio E, Newsome D, Livingston DM . Transrepression of RNA polymerase II promoters by the simian virus 40 small t antigen. J Virol 1994; 68: 6180–6187.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin YC, Peng JM, Wang WB . The N-terminal common domain of simian virus 40 large T and small t antigens acts as a transformation suppressor of the HER-2/neu oncogene. Oncogene 2000; 19: 2704–2713.

    Article  CAS  Google Scholar 

  31. Wen CC, Cheng SA, Hsuen SP, Huang YL, Kuo ZK, Lee HF et al. SV40 T/t-common polypeptide specifically induces apoptosis in human cancer cells that overexpress HER2/neu. Cancer Res 2006; 66: 5847–5857.

    Article  CAS  Google Scholar 

  32. Pan SH, Tai CC, Lin CS, Hsu WB, Chou SF, Lai CC et al. Epstein–Barr virus nuclear antigen 2 disrupts mitotic checkpoint and causes chromosomal instability. Carcinogenesis 2009; 30: 366–375.

    Article  CAS  Google Scholar 

  33. Chia JS, Du JL, Hsu WB, Sun A, Chiang CP, Wang WB . Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien–Hsien liquid. BMC Cancer 2010; 10: 175–190.

    Article  Google Scholar 

  34. Li YM, Zhou BP, Deng J, Pan Y, Hay N, Hung MC . A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res 2005; 65: 3257–3263.

    Article  CAS  Google Scholar 

  35. Kim KK, Lee JJ, Yang Y, You KH, Lee JH . Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells. Carcinogenesis 2008; 29: 704–712.

    Article  CAS  Google Scholar 

  36. Kumaran GC, Jayson GC, Clamp AR . Antiangiogenic drugs in ovarian cancer. Br J Cancer 2009; 100: 1–7.

    Article  CAS  Google Scholar 

  37. Tan M, Yao J, Yu D . Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res 1997; 57: 1199–1205.

    CAS  PubMed  Google Scholar 

  38. Urban P, Vuaroqueaux V, Labuhn M, Delorenzi M, Wirapati P, Wight E et al. Increased expression of urokinase-type plasminogen activator mRNA determines adverse prognosis in ErbB2-positive primary breast cancer. J Clin Oncol 2006; 24: 4245–4253.

    Article  CAS  Google Scholar 

  39. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM . Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 2000; 6: 1335–1340.

    Article  CAS  Google Scholar 

  40. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J et al. S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 2004; 24: 3112–3124.

    Article  CAS  Google Scholar 

  41. Lehman JA, Gomez-Cambronero J . Molecular crosstalk between p70S6k and MAPK cell signaling pathways. Biochem Biophys Res Commun 2002; 293: 463–469.

    Article  CAS  Google Scholar 

  42. Kelleher III RJ, Govindarajan A, Jung HY, Kang H, Tonegawa S . Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 2004; 116: 467–479.

    Article  CAS  Google Scholar 

  43. Klos KS, Wyszomierski SL, Sun M, Tan M, Zhou X, Li P et al. ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res 2006; 66: 2028–2037.

    Article  CAS  Google Scholar 

  44. Milanini-Mongiat J, Pouyssegur J, Pages G . Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 2002; 277: 20631–20639.

    Article  CAS  Google Scholar 

  45. Yen L, Benlimame N, Nie ZR, Xiao D, Wang T, Al Moustafa AE et al. Differential regulation of tumor angiogenesis by distinct ErbB homo- and heterodimers. Mol Biol Cell 2002; 13: 4029–4044.

    Article  CAS  Google Scholar 

  46. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J . p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 1999; 274: 32631–32637.

    Article  CAS  Google Scholar 

  47. Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A et al. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 2006; 281: 33095–33106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jia-Ling Du for technical assistance and Dr Lih-Hwa Hwang for helpful discussion. This work was supported by grants NSC93-3112-B-002-014, NSC95-2320-B-002-093, NSC96-2320-B-002-035-MY3 and NSC96-2321-B-002-028-MY2 from National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-B Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsueh, SP., Hsu, WB., Wen, CC. et al. SV40 T/t-common polypeptide inhibits angiogenesis and growth of HER2-overexpressing human ovarian cancer. Cancer Gene Ther 18, 859–870 (2011). https://doi.org/10.1038/cgt.2011.55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.55

Keywords

Search

Quick links