Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma

Abstract

Mesenchymal epithelial transition factor (MET) is one of the critical cell signaling molecules whose aberrant expression is reported in several human cancers. The aim of the study is to investigate the antigene and antiproliferative effect of short triplex forming oligonucleotides, TFO-1 (part of the positive regulatory element) and TFO-2 (away from the transcription start site) on MET expression. HepG2 cells transfected only with TFO-1 (but not with TFO-2 and non-specific TFO) significantly decreased MET levels, which is accompanied by decrease in antiapoptotic proteins and increase in pro-apoptotic proteins. Phosphoproteome-array analysis of 46 intracellular kinases revealed hypophosphorylation of about 15 kinases including ERK, AKT, Src and MEK, suggesting the growth inhibitory effect of TFO-1. Further, the efficacy of TFO-1 was tested on diethylnitrosamine-induced liver tumors in wistar rats. T2-weighted magnetic resonance imaging showed decrease in liver tumor volume up to 90% after treatment with TFO-1. Decreased MET expression and elevated apoptotic activity further indicate that TFO-1 targeted to c-met leads to cell death and tumor regression in hepatoma. Formation of stable DNA triplex between TFO-1 and targeted gene sequence was confirmed by circular dichroic spectroscopy and gel retardation assay. Therefore, it can be concluded that DNA triplex-based therapeutic approaches hold promise in the treatment of malignancies associated with MET overexpression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 1984; 311: 29–33.

    Article  CAS  PubMed  Google Scholar 

  2. Weidner KM, Sachs M, Birchmeier W . The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol 1993; 121: 145–154.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T . Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 2005; 53: 35–69.

    Article  PubMed  Google Scholar 

  4. Varnholt H, Asayama Y, Aishima S, Taguchi K, Sugimachi K, Tsuneyoshi M . C-met and hepatocyte growth factor expression in combined hepatocellular and cholangiocarcinoma. Oncol Rep 2002; 9: 35–41.

    CAS  PubMed  Google Scholar 

  5. Nakazawa K, Dobashi Y, Suzuki S, Fujii H, Takeda Y, Ooi A . Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J Pathol 2005; 206: 356–365.

    Article  CAS  PubMed  Google Scholar 

  6. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  7. Ferracini R, Di Renzo MF, Scotlandi K, Baldini N, Olivero M, Lollini P et al. The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene 1995; 10: 739–749.

    CAS  PubMed  Google Scholar 

  8. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE . Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol 1996; 148: 225–232.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 1997; 16: 68–73.

    Article  CAS  PubMed  Google Scholar 

  10. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene 2000; 19: 4947–4953.

    Article  CAS  PubMed  Google Scholar 

  11. Ma WW, Adjei AA . Novel agents on the horizon for cancer therapy. CA Cancer J Clin 2009; 59: 111–137.

    Article  PubMed  Google Scholar 

  12. Eder JP, Vande Woude GF, Boerner SA, LoRusso PM . Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 2009; 15: 2207–2214.

    Article  CAS  PubMed  Google Scholar 

  13. Puri N, Khramtsov A, Ahmed S, Hetzel JT, Jagadeeswaran R, Karczmar G et al. A selective small molecule inhibitor of MET, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res 2007; 67: 3529–3534.

    Article  CAS  PubMed  Google Scholar 

  14. Morotti A, Mila S, Accornero P, Tagliabue E, Ponzetto C . K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene 2002; 21: 4885–4893.

    Article  CAS  PubMed  Google Scholar 

  15. Berthou S, Aebersold DM, Schmidt LS, Stroka D, Heigl C, Streit B et al. The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene 2004; 23: 5387–5393.

    Article  CAS  PubMed  Google Scholar 

  16. Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and MET, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 2007; 6: 3314–3322.

    Article  CAS  PubMed  Google Scholar 

  17. Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci USA 2006; 103: 5090–5095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaji M, Yonemura Y, Harada S, Liu X, Terada I, Yamamoto H . Participation of c-met in the progression of human gastric cancers: anti-c-met oligonucleotides inhibit proliferation or invasiveness of gastric cancer cells. Cancer Gene Ther 1996; 3: 393–404.

    CAS  PubMed  Google Scholar 

  19. Stabile LP, Lyker JS, Huang L, Siegfried JM . Inhibition of human non-small cell lung tumors by a c-Met antisense/U6 expression plasmid strategy. Gene Ther 2005; 11: 325–335.

    Article  Google Scholar 

  20. Corso S, Migliore C, Ghiso E, De Rosa G, Comoglio PM, Giordano S . Silencing the MET oncogene leads to regression of experimental tumors and metastasis. Oncogene 2008; 27: 684–693.

    Article  CAS  PubMed  Google Scholar 

  21. McGuffie EM, Pacheco D, Carbone GM, Catapano CV . Antigene and antiproliferative effects of a c-myc-targeting phosphorothioate triple helix-forming oligonucleotide in human leukemia cells. Cancer Res 2000; 60: 3790–3799.

    CAS  PubMed  Google Scholar 

  22. Cogoi S, Ballico M, Bonora GM, Xodo LE . Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki-ras polypurine/polypyrimidine motif correlates with protein binding. Cancer Gene Ther 2004; 11: 465–476.

    Article  CAS  PubMed  Google Scholar 

  23. Shen C, Rattat D, Buck A, Mehrke G, Polat B, Ribbert H . Targeting bcl-2 by triplex-forming oligonucleotide—a promising carrier for gene-radiotherapy. Cancer Biother Radiopharm 2003; 18: 17–26.

    Article  PubMed  Google Scholar 

  24. Ebbinghaus SW, Gee JE, Rodu B, Mayfield CA, Sanders G, Miller DM . Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest 1993; 92: 2433–2439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singhal G, Rajeswari MR . Interaction of actinomycin D with promoter element of c-met and its inhibitory effect on the expression of MET. J Biomol Struct Dyn 2009; 26: 625–636.

    Article  CAS  PubMed  Google Scholar 

  26. Varnholt H, Asayama Y, Aishima S, Taguchi K, Sugimachi K, Tsuneyoshi M . C-met and hepatocyte growth factor expression in combined hepatocellular and cholangiocarcinoma. Oncol Rep 2002; 9: 35–41.

    CAS  PubMed  Google Scholar 

  27. Sambrook J, Fritch EF, Maniatis T . Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbour Press: NY, 1989.

    Google Scholar 

  28. Jain A, Rajeswari MR, Ahmed F . Formation and thermodynamic stability of intermolecular (R*R*Y) DNA triplex in GAA/TTC repeats associated with Freidreich's ataxia. J Biomol Struct Dyn 2002; 19: 691–699.

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y . The human hepatocyte growth factor receptor gene: complete structural organization and promoter characterization. Gene 1998; 215: 159–169.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Tolbert EM, Sun AM, Dworkin LD . Primary structure of rat HGF receptor and induced expression in glomerular mesangial cells. Am J Physiol 1996; 271: F679–F688.

    CAS  PubMed  Google Scholar 

  31. Chan PP, Glazer PM . Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med 1997; 75: 267–282.

    Article  CAS  PubMed  Google Scholar 

  32. Rajeswari MR, Bose HS, Kukreti S, Gupta A, Chauhan VS, Roy KB . Binding of oligopeptides to d-AGATCTAGATCT and d-AAGCTTAAGCTT: can tryptophan intercalate in DNA hairpins? Biochemistry 1992; 31: 6237–6241.

    Article  CAS  PubMed  Google Scholar 

  33. Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE et al. Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 2007; 67: 2081–2088.

    Article  CAS  PubMed  Google Scholar 

  34. Fan S, Wang JA, Yuan RQ, Rockwell S, Andres J, Zlatapolskiy A et al. Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene 1998; 17: 131–141.

    Article  CAS  PubMed  Google Scholar 

  35. Mitry RR, Sarraf CE, Havlik R, Habib NA . Detection of adenovirus and initiation of apoptosis in hepatocellular carcinoma cells after Ad-p53 treatment. Hepatology 2000; 31: 885–889.

    Article  CAS  PubMed  Google Scholar 

  36. Xu GW, Sun ZT, Forrester K, Wang XW, Coursen J, Harris CC . Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 1996; 24: 1264–1268.

    Article  CAS  PubMed  Google Scholar 

  37. Koritschoner NP, Bocco JL, Panzetta-Dutari GM, Dumur CI, Flury A, Patrito LC . A novel human zinc finger protein that interacts with the core promoter element of a TATA box-less gene. J Biol Chem 1997; 272: 9573–9580.

    Article  CAS  PubMed  Google Scholar 

  38. Rajeswari MR, Jain A, Sharma A, Singh D, Jagannathan NR, Sharma U et al. Evaluation of skin tumors by magnetic resonance imaging. Lab Invest 2003; 83: 1279–1283.

    Article  PubMed  Google Scholar 

  39. Peemoeller H, Shenoy RK, Pintar MM, Kydon DW, Inch WR . Improved characterization of healthy and malignant tissue by NMR line-shape relaxation correlations. Biophys J 1982; 38: 271–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herynk MH, Stoeltzing O, Reinmuth N, Parikh NU, Abounader R, Laterra J et al. Down-regulation of c-Met inhibits growth in the liver of human colorectal carcinoma cells. Cancer Res 2003; 63: 2990–2996.

    CAS  PubMed  Google Scholar 

  41. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  42. Felsher DW, Bishop JM . Reversible tumorogenesis by MYC in hematopoietic lineages. Mol Cell 1999; 4: 199–207.

    Article  CAS  PubMed  Google Scholar 

  43. Patanè S, Avnet S, Coltella N, Costa B, Sponza S, Olivero M et al. MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 2006; 66: 4750–4757.

    Article  PubMed  Google Scholar 

  44. Taulli R, Accornero P, Follenzi A, Mangano T, Morotti A, Scuoppo C et al. RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Ther 2005; 12: 456–463.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Yale Liver Centre, Yale University, USA for providing HepG2 cells. We also would like to thank Dr Ashutosh Haldar, Department of Reproductive Biology, A.I.I.M.S. for allowing us to use Fluorescence Microscope and Electron Microscopy Facility, A.I.I.M.S. for the help in acquiring TEM images. This work is funded by the Department of Science and Technology, India (Ref No: SR/SO/HS-118/2008). We wish to thank Professor Sudha Bhattacharya, Dean, School of Environmental Sciences, Jawaharlal Nehru University, India for providing us γ-32P [ATP] and Professor Shyamal K Goswami, School of Life Sciences, Jawaharlal Nehru University, India for allowing us to carry out the gel retardation assay using radioactive material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Rajeswari.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, G., Akhter, M., Stern, D. et al. DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma. Cancer Gene Ther 18, 520–530 (2011). https://doi.org/10.1038/cgt.2011.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.21

Keywords

Search

Quick links