Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vitro and in vivo delivery of novel anticancer fusion protein MULT1E/FasTI via adenoviral vectors

Abstract

We previously demonstrated that a novel fusion protein MULT1E/FasTI expressed by TC-1 tumor cells inhibited tumor growth by simultaneously activating NKG2D expressing cells, such as NK cells, through the MULT1E portion and sending a death signal into cells through the Fas portion (Kotturi et al., Gene Therapy, 2008). In this study, an adenoviral gene delivery system was used to deliver this fusion protein. Our data indicate that adenoviral vector can efficiently deliver the MULT1E/FasTI fusion protein into TC-1 cells both in vitro and in vivo as assayed by RT-PCR, FACS analysis, caspase-3 activity and decreased in vivo tumor growth. This study further confirms that MULTE/FasTI represents a powerful bi-functional, therapeutic protein for the treatment of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Trinchieri G . Biology of natural killer cells. Adv Immunol 1989; 47: 187–376.

    Article  CAS  Google Scholar 

  2. Diefenbach A, Raulet DH . Strategies for target cell recognition by natural killer cells. Immunol Rev 2001; 181: 170–184.

    Article  CAS  Google Scholar 

  3. Ljunggren HG, Karre K . In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237–244.

    Article  CAS  Google Scholar 

  4. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727–729.

    Article  CAS  Google Scholar 

  5. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH . Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000; 1: 119–126.

    Article  CAS  Google Scholar 

  6. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH . The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 2002; 17: 19–29.

    Article  CAS  Google Scholar 

  7. Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E et al. Selective associations with signaling molecules determines stimulatory versus costimulatory activity of NKG2D. Nat Immunol 2002; 3: 1142–1149.

    Article  CAS  Google Scholar 

  8. Malarkannan S, Shih PP, Eden PA, Horng T, Zuberi AR, Christianson G et al. The molecular and functional characterization of a dominant minor H antigen, H60. J Immunol 1998; 161: 3501–3509.

    CAS  PubMed  Google Scholar 

  9. Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM . Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 2002; 169: 4079–4083.

    Article  CAS  Google Scholar 

  10. Diefenbach A, Hsia JK, Hsiung MY, Raulet DH . A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 2003; 33: 381–391.

    Article  CAS  Google Scholar 

  11. Peter ME, Krammer PH . The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    Article  CAS  Google Scholar 

  12. Houston A, O'Connell J . The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 2004; 4: 321–426.

    Article  CAS  Google Scholar 

  13. Groh V, Wu J, Yee C, Spies T . Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 2002; 419: 734–738.

    Article  CAS  Google Scholar 

  14. Sahh HR, Rammensee HG, Steinle A . Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 2002; 169: 4098–4102.

    Article  Google Scholar 

  15. Moller P, Koretz K, Leithauser F, Bruderlein S, Henne C, Quentmeier A et al. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal andneoplastic colon epithelium. Int J Cancer 1994; 57: 371–377.

    Article  CAS  Google Scholar 

  16. Ivanov VN, Bergami PL, Maulit G, Sato TA, Sassoon D, Ronai Z . FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 2003; 23: 3623–3635.

    Article  CAS  Google Scholar 

  17. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P et al. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 1998; 396: 699–703.

    Article  CAS  Google Scholar 

  18. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA et al. BCL-X, a BCL-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  CAS  Google Scholar 

  19. Sarid R, Sat T, Bohenzky RA, Russo JJ, Chang Y . Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nature Med 1997; 3: 293–298.

    Article  CAS  Google Scholar 

  20. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nature Med 1996; 2: 1361–1366.

    Article  CAS  Google Scholar 

  21. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M . Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 2000; 97: 10872–10877.

    Article  CAS  Google Scholar 

  22. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nature Med 2000; 6: 529–535.

    Article  CAS  Google Scholar 

  23. Soengas MS, Capodieci P, Polsky D . Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 2001; 409: 207–211.

    Article  CAS  Google Scholar 

  24. Kotturi HSR, Li J, Branham-O'Connor M, Stickel SL, Yu X, Wagner TE et al. Tumor cells expressing a fusion protein of MULT1 and Fas are rejected in vivo by apoptosis and NK cell activation. Gene Therapy 2008; 15: 1302–1310.

    Article  CAS  Google Scholar 

  25. Young LS, Searle PF, Onion D, Mautner V . Viral gene therapy strategies: from basic science to clinical application. J Pathol 2006; 208: 299–318.

    Article  CAS  Google Scholar 

  26. Mollinedo F, Gajate C . Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat 2006; 9: 51–73.

    Article  CAS  Google Scholar 

  27. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364: 806–809.

    Article  CAS  Google Scholar 

  28. Tanaka M, Suda T, Yatomi T, Nakamura N, Nagata S . Lethal effect of recombinant human Fas ligand in mice pretreated with Propionibacterium acnes. J Immunol 1997; 158: 2303–2309.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Eric Holle and his staff for the professional care of the mice used in this study, Lakendra Workman for her administrative contribution in this study and Angela Howing for her help in preparation of frozen tissue sections. This study was supported in part by the GHS Oncology Foundation and the New Hope fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotturi, H., Li, J., Branham-O'Connor, M. et al. In vitro and in vivo delivery of novel anticancer fusion protein MULT1E/FasTI via adenoviral vectors. Cancer Gene Ther 17, 164–170 (2010). https://doi.org/10.1038/cgt.2009.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.69

Keywords

This article is cited by

Search

Quick links