Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy

Abstract

A number of monoclonal antibodies (mAbs) have been studied for their ability to enhance immune responses. Although these antibodies are effective in pre-clinical and clinical studies, they are costly and have occasionally been associated with adverse effects such as autoimmunity and cytokine storm. Numerous studies have shown that treatment of mice with an agonistic mAb, clone DTA-1, targeting murine glucocorticoid-induced tumor necrosis factor receptor (GITR) results in enhanced immune responses in tumor-bearing animals. Herein, we evaluate the novel approach of transfecting dendritic cell (DC) with mRNA encoding the heavy and light chain of the anti-GITR mAb. We show the induction of significantly enhanced tumor immunity by vaccinating with a combination of anti-GITR-secreting DC and tumor antigen-presenting DC. This enhancement is comparable to that seen with systemically delivered mAb along with the antigen-presenting DC. Importantly, when anti-GITR was delivered using RNA-transfected DC, we observed no evidence of autoimmune hypopigmentation in any tumor-free mice. We also show enhanced induction of cytotoxic T-lymphocyte responses, which is only observed when the antigen-presenting and antibody-secreting DC are co-injected at the same site. To illustrate the broad utility of this strategy, we show that DC transfected with mRNA encoding GITR-ligand/Fc fusion protein is also an effective tumor vaccine adjuvant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

DC:

dendritic cells

GITR:

glucocorticoid-induced TNF receptor

H+L:

heavy and light

LN:

lymph node

mAb:

monoclonal antibody

OVA:

chicken ovalbumin

Treg:

regulatory T cell

References

  1. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  Google Scholar 

  2. Steinman RM, Banchereau J . Taking dendritic cells into medicine. Nature 2007; 449: 419–426.

    Article  CAS  Google Scholar 

  3. Gilboa E . DC-based cancer vaccines. J Clin Invest 2007; 117: 1195–1203.

    Article  CAS  Google Scholar 

  4. Fong L, Engleman EG . Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18: 245–273.

    Article  CAS  Google Scholar 

  5. Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212: 8–27.

    Article  CAS  Google Scholar 

  6. Dranoff G . The therapeutic implications of intratumoral regulatory T cells. Clin Cancer Res 2005; 11: 8226–8229.

    Article  CAS  Google Scholar 

  7. Nomura T, Sakaguchi S . Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 2005; 293: 287–302.

    CAS  PubMed  Google Scholar 

  8. Rudensky AY, Campbell DJ . In vivo sites and cellular mechanisms of T reg cell-mediated suppression. J Exp Med 2006; 203: 489–492.

    Article  CAS  Google Scholar 

  9. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  Google Scholar 

  10. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66: 3294–3302.

    Article  CAS  Google Scholar 

  11. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002; 168: 4272–4276.

    Article  CAS  Google Scholar 

  12. Zhou G, Drake CG, Levitsky HI . Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 2006; 107: 628–636.

    Article  CAS  Google Scholar 

  13. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L . Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 2007; 7: 95–106.

    Article  CAS  Google Scholar 

  14. Murillo O, Arina A, Tirapu I, Alfaro C, Mazzolini G, Palencia B et al. Potentiation of therapeutic immune responses against malignancies with monoclonal antibodies. Clin Cancer Res 2003; 9: 5454–5464.

    CAS  PubMed  Google Scholar 

  15. Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003; 100: 4712–4717.

    Article  CAS  Google Scholar 

  16. Maker AV, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE et al. Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J Immunother 2006; 29: 455–463.

    Article  CAS  Google Scholar 

  17. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100: 8372–8377.

    Article  CAS  Google Scholar 

  18. Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP . A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res 2007; 13: 1810–1815.

    Article  CAS  Google Scholar 

  19. Cranmer LD, Hersh E . The role of the CTLA4 blockade in the treatment of malignant melanoma. Cancer Invest 2007; 25: 613–631.

    Article  CAS  Google Scholar 

  20. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD . Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006; 355: 1018–1028.

    Article  CAS  Google Scholar 

  21. Carter P . Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001; 1: 118–129.

    Article  CAS  Google Scholar 

  22. Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T et al. Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res 2006; 66: 4904–4912.

    Article  CAS  Google Scholar 

  23. Kanamaru F, Youngnak P, Hashiguchi M, Nishioka T, Takahashi T, Sakaguchi S et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol 2004; 172: 7306–7314.

    Article  CAS  Google Scholar 

  24. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 2005; 202: 885–891.

    Article  CAS  Google Scholar 

  25. La S, Kim E, Kwon B . In vivo ligation of glucocorticoid-induced TNF receptor enhances the T-cell immunity to herpes simplex virus type 1. Exp Mol Med 2005; 37: 193–198.

    Article  CAS  Google Scholar 

  26. Ramirez-Montagut T, Chow A, Hirschhorn-Cymerman D, Terwey TH, Kochman AA, Lu S et al. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J Immunol 2006; 176: 6434–6442.

    Article  CAS  Google Scholar 

  27. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S . Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002; 3: 135–142.

    Article  CAS  Google Scholar 

  28. Zhou P, L'Italien L, Hodges D, Schebye XM . Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. J Immunol 2007; 179: 7365–7375.

    Article  CAS  Google Scholar 

  29. Shevach EM, Stephens GL . The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol 2006; 6: 613–618.

    Article  CAS  Google Scholar 

  30. Nocentini G, Riccardi C . GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 2005; 35: 1016–1022.

    Article  CAS  Google Scholar 

  31. Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 1997; 94: 6216–6221.

    Article  CAS  Google Scholar 

  32. Stephens GL, McHugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 2004; 173: 5008–5020.

    Article  CAS  Google Scholar 

  33. Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003; 100: 15059–15064.

    Article  CAS  Google Scholar 

  34. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E . Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 2007; 67: 371–380.

    Article  CAS  Google Scholar 

  35. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E . Synergy between tumor immunotherapy and antiangiogenic therapy. Blood 2003; 102: 964–971.

    Article  CAS  Google Scholar 

  36. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6: 1011–1017.

    Article  CAS  Google Scholar 

  37. Lee J, Dollins CM, Boczkowski D, Sullenger BA, Nair S . Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology 2008; 125: 229–240.

    Article  CAS  Google Scholar 

  38. Porgador A, Feldman M, Eisenbach L . H-2 Kb transfection of B16 melanoma cells results in reduced tumourigenicity and metastatic competence. J Immunogenet 1989; 16: 291–303.

    Article  CAS  Google Scholar 

  39. Nishikawa H, Kato T, Hirayama M, Orito Y, Sato E, Harada N et al. Regulatory T cell-resistant CD8+ T cells induced by glucocorticoid-induced tumor necrosis factor receptor signaling. Cancer Res 2008; 68: 5948–5954.

    Article  CAS  Google Scholar 

  40. Ye Z, Hellstrom I, Hayden-Ledbetter M, Dahlin A, Ledbetter JA, Hellstrom KE . Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med 2002; 8: 343–348.

    Article  CAS  Google Scholar 

  41. Simmons AD, Moskalenko M, Creson J, Fang J, Yi S, VanRoey MJ et al. Local secretion of anti-CTLA-4 enhances the therapeutic efficacy of a cancer immunotherapy with reduced evidence of systemic autoimmunity. Cancer Immunol Immunother 2008; 57: 1263–1270.

    Article  CAS  Google Scholar 

  42. Chen L, Huang TG, Meseck M, Mandeli J, Fallon J, Woo SL . Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation. Mol Ther 2007; 15: 2194–2202.

    Article  CAS  Google Scholar 

  43. Hu P, Arias RS, Sadun RE, Nien YC, Zhang N, Sabzevari H et al. Construction and preclinical characterization of Fc-mGITRL for the immunotherapy of cancer. Clin Cancer Res 2008; 14: 579–588.

    Article  CAS  Google Scholar 

  44. McHugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002; 16: 311–323.

    Article  CAS  Google Scholar 

  45. Kim J, Choi WS, Kang H, Kim HJ, Suh JH, Sakaguchi S et al. Conversion of alloantigen-specific CD8+ T cell anergy to CD8+ T cell priming through in vivo ligation of glucocorticoid-induced TNF receptor. J Immunol 2006; 176: 5223–5231.

    Article  CAS  Google Scholar 

  46. Kohm AP, Williams JS, Miller SD . Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol 2004; 172: 4686–4690.

    Article  CAS  Google Scholar 

  47. Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 2004; 34: 613–622.

    Article  CAS  Google Scholar 

  48. Tuyaerts S, Van Meirvenne S, Bonehill A, Heirman C, Corthals J, Waldmann H et al. Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. J Leukoc Biol 2007; 82: 93–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank David Snyder for assistance with animal studies. We are grateful to Dr Eli Gilboa (University of Miami, Miami, FL) and Dr Bruce Sullenger (Duke University, Durham, NC) for helpful comments and Dr Shimon Sakaguchi (Kyoto University, Japan) for providing us with the DTA-1 anti-GITR hybridoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nair.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boczkowski, D., Lee, J., Pruitt, S. et al. Dendritic cells engineered to secrete anti-GITR antibodies are effective adjuvants to dendritic cell-based immunotherapy. Cancer Gene Ther 16, 900–911 (2009). https://doi.org/10.1038/cgt.2009.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.39

Keywords

This article is cited by

Search

Quick links