Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model

Abstract

Cancer metastasis contributes significantly to cancer mortality and is facilitated by lymphangiogenesis and angiogenesis. Vascular endothelial growth factor-C (VEGF-C) and VEGF-A are involved in lymphangiogenesis and angiogenesis. To inhibit metastasis, combination therapy with vector-based small interfering RNA (siRNA) against VEGF-C and/or VEGF-A was conducted on murine metastatic mammary cancer. Syngeneic, inoculated, metastatic mammary cancers received direct intratumoral injection of plasmid siRNA vector targeting VEGF-C (psiRNA-VEGF-C), VEGF-A (psiRNA-VEGF-A), both VEGF-C and VEGF-A (both psiRNA-VEGF-C and psiRNA-VEGF-A vectors injected, referred to as the psiRNA-VEGF-C+A group) or a scrambled sequence (psiRNA-SCR) as control, once a week for 8 weeks. Gene electrotransfer was performed on the tumors after each injection. Tumor volume was significantly lower in the psiRNA-VEGF-A and the psiRNA-VEGF-C+A groups throughout the study. Lymph node metastasis was significantly less frequent in all therapeutic groups, whereas the multiplicity of lung metastases was significantly lower in the psiRNA-VEGF-C+A group only. All siRNA therapeutic groups showed a significant reduction in the number of dilated lymphatic vessels containing intraluminal cancer cells and microvessel density. Our data suggest that specific silencing of the VEGF-C or VEGF-A gene alone can inhibit lymph node metastasis. However, combination siRNA therapy targeting both VEGF-C and VEGF-A inhibits both lymph node and lung metastasis, rendering this combined therapy more beneficial than either alone. The observed anti-metastatic activity of siRNA-expressing vectors targeting VEGF-C or VEGF-A may be of high clinical significance in the treatment of metastatic breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

RT-PCR:

reverse transcription-PCR

shRNA:

short hairpin RNAs

siRNA:

short interfering RNA

VEGF:

vascular endothelial growth factor

References

  1. Cody III HS, Borgen PI, Tan LK . Redefining prognosis in node-negative breast cancer: can sentinel lymph node biopsy raise the threshold for systemic adjuvant therapy? Ann Surg Oncol 2004; 11 (3 Suppl): 227S–230S.

    Article  PubMed  Google Scholar 

  2. Joory KD, Levick JR, Mortimer PS, Bates DO . Vascular endothelial growth factor-C (VEGF-C) expression in normal human tissues. Lymphat Res Biol 2006; 4: 73–82.

    Article  CAS  PubMed  Google Scholar 

  3. Salven P, Lymboussaki A, Heikkila P, Jääskela-Saari H, Enholm B, Aase K et al. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998; 153: 103–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mylona E, Alexandrou P, Mpakali A, Giannopoulou I, Liapis G, Markaki S et al. Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and -D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol 2007; 33: 294–300.

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura Y, Yasuoka H, Tsujimoto M, Imabun S, Nakahara M, Nakao K et al. Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 2005; 91: 125–132.

    Article  CAS  PubMed  Google Scholar 

  6. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7: 192–198.

    Article  CAS  PubMed  Google Scholar 

  7. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S, Jäättelä M et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61: 1786–1790.

    CAS  PubMed  Google Scholar 

  8. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002; 94: 819–825.

    Article  CAS  PubMed  Google Scholar 

  9. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roy H, Bhardwaj S, Yla-Herttuala S . Biology of vascular endothelial growth factors. FEBS Lett 2006; 580: 2879–2887.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Z, Varney ML, Backora MW, Cowan K, Solheim JC, Talmadge JE et al. Down-regulation of vascular endothelial cell growth factor-C expression using small interfering RNA vectors in mammary tumors inhibits tumor lymphangiogenesis and spontaneous metastasis and enhances survival. Cancer Res 2005; 65: 9004–9011.

    Article  CAS  PubMed  Google Scholar 

  12. Morimoto J, Imai S, Haga S, Iwai Y, Iwai M, Hiroishi S et al. New murine mammary tumor cell lines. In Vitro Cell Dev Biol 1991; 27A: 349–351.

    Article  CAS  PubMed  Google Scholar 

  13. Shibata MA, Morimoto J, Otsuki Y . Suppression of murine mammary carcinoma growth and metastasis by HSVtk/GCV gene therapy using in vivo electroporation. Cancer Gene Ther 2002; 9: 16–27.

    Article  CAS  PubMed  Google Scholar 

  14. Shibata MA, Ito Y, Morimoto J, Otsuki Y . Lovastatin inhibits tumor growth and lung metastasis in mouse mammary carcinoma model: a p53-independent mitochondrial-mediated apoptotic mechanism. Carcinogenesis 2004; 25: 1887–1898.

    Article  CAS  PubMed  Google Scholar 

  15. Shibata MA, Ito Y, Morimoto J, Kusakabe K, Yoshinaka R, Otsuki Y . In vivo electrogene transfer of interleukin-12 inhibits tumor growth and lymph node and lung metastases in mouse mammary carcinomas. J Gene Med 2006; 8: 335–352.

    Article  CAS  PubMed  Google Scholar 

  16. Czauderna F, Santel A, Hinz M, Fechtner M, Durieux B, Fisch G et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res 2003; 31: e127.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G . Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003; 303: 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  18. Shibata MA, Morimoto J, Doi H, Morishima S, Naka M, Otsuki Y . Electrogene therapy using endostatin, with or without suicide gene therapy, suppresses murine mammary tumor growth and metastasis. Cancer Gene Ther 2007; 14: 268–278.

    Article  CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  20. Shibata MA, Miwa Y, Miyashita M, Morimoto J, Abe H, Otsuki Y . Electrogene transfer of an Epstein-Barr virus-based plasmid replicon vector containing the diphtheria toxin A gene suppresses mammary carcinoma growth in SCID mice. Cancer Sci 2005; 96: 434–440.

    Article  CAS  PubMed  Google Scholar 

  21. Shibata MA, Liu M-L, Knudson MC, Shibata E, Yoshidome K, Bandey T et al. Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: reduction in protective apoptotic response at the preneoplastic stage. EMBO J 1999; 18: 2692–2701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorrin-Rivas MJ, Arii S, Furutani M, Mizumoto M, Mori A, Hanaki K et al. Mouse macrophage metalloelastase gene transfer into a murine melanoma suppresses primary tumor growth by halting angiogenesis. Clin Cancer Res 2000; 6: 1647–1654.

    CAS  PubMed  Google Scholar 

  23. Carter CL, Allen C, Henson DE . Relation of tumor size, lymph node status, and survival in 24 740 breast cancer cases. Cancer 1989; 63: 181–187.

    Article  CAS  PubMed  Google Scholar 

  24. Harrison R, Byrne BJ, Tung L . Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett 1998; 435: 1–5.

    Article  CAS  PubMed  Google Scholar 

  25. Goto T, Nishi T, Tamura T, Dev SB, Takeshima H, Kochi M et al. Highly efficient electro-gene therapy of solid tumor by using an expression plasmid for the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 2000; 97: 354–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y et al. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res 2001; 61: 3281–3284.

    CAS  PubMed  Google Scholar 

  27. Yamashita Y, Shimada M, Hasegawa H, Minagawa R, Rikimaru T, Hamatsu T et al. Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model. Cancer Res 2001; 61: 1005–1012.

    CAS  PubMed  Google Scholar 

  28. Shibata MA, Horiguchi T, Morimoto J, Otsuki Y . Massive apoptotic cell death in chemically induced rat urinary bladder carcinomas following in situ HSVtk electrogene transfer. J Gene Med 2003; 5: 219–231.

    Article  CAS  PubMed  Google Scholar 

  29. Sleeman JP . The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 2000; 157: 55–81.

    Article  CAS  PubMed  Google Scholar 

  30. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154: 1381–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Achen MG, Mann GB, Stacker SA . Targeting lymphangiogenesis to prevent tumour metastasis. Br J Cancer 2006; 94: 1355–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566–3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shimizu K, Kubo H, Yamaguchi K, Kawashima K, Ueda Y, Matsuo K et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci 2004; 95: 328–333.

    Article  CAS  PubMed  Google Scholar 

  35. Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B et al. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 2005; 65: 6901–6909.

    Article  CAS  PubMed  Google Scholar 

  36. Dvorak HF . Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20: 4368–4380.

    Article  CAS  PubMed  Google Scholar 

  37. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M . VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005; 201: 1089–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bjorndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P, Galter D et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 2005; 65: 9261–9268.

    Article  PubMed  Google Scholar 

  39. Mercurio AM, Lipscomb EA, Bachelder RE . Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia 2005; 10: 283–290.

    Article  PubMed  Google Scholar 

  40. Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 2006; 66: 2650–2657.

    Article  CAS  PubMed  Google Scholar 

  41. Whitehurst B, Flister MJ, Bagaitkar J, Volk L, Bivens CM, Pickett B et al. Anti-VEGF-A therapy reduces lymphatic vessel density and expression of VEGFR-3 in an orthotopic breast tumor model. Int J Cancer 2007; 121: 2181–2191.

    Article  CAS  PubMed  Google Scholar 

  42. Barbera-Guillem E, Nyhus JK, Wolford CC, Friece CR, Sampsel JW . Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process. Cancer Res 2002; 62: 7042–7049.

    CAS  PubMed  Google Scholar 

  43. Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N . Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 2002; 440: 583–588.

    Article  CAS  PubMed  Google Scholar 

  44. McColl BK, Stacker SA, Achen MG . Molecular regulation of the VEGF family—inducers of angiogenesis and lymphangiogenesis. Apmis 2004; 112: 463–480.

    Article  CAS  PubMed  Google Scholar 

  45. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998; 95: 14389–14394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This investigation was supported by a Grant-in-Aid for Scientific Research (C)(2) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (no. 17591360 to MA Shibata) and, in part, by a High-Tech Research Center Grant to Osaka Medical College from MEXT. We also thank Ms Hidemi Hiyama and Mika Yoshida for their excellent secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M-A Shibata or Y Otsuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, MA., Morimoto, J., Shibata, E. et al. Combination therapy with short interfering RNA vectors against VEGF-C and VEGF-A suppresses lymph node and lung metastasis in a mouse immunocompetent mammary cancer model. Cancer Gene Ther 15, 776–786 (2008). https://doi.org/10.1038/cgt.2008.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.43

Keywords

This article is cited by

Search

Quick links