Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NSAID treatment with meloxicam enhances peripheral stem cell mobilization in myeloma

Subjects

Abstract

Chemotherapy with G–CSF is used to mobilize peripheral stem cells in multiple myeloma (MM) patients, with plerixafor as a rescue strategy for poorly mobilizing patients. Preclinical studies suggested that the nonsteroidal anti-inflammatory drug meloxicam enhances the mobilization of CD34+ cells. In this single-center study, we evaluated whether adding meloxicam to chemotherapy/G–CSF mobilization increases peripheral hematopoietic CD34+ cell levels and reduces the need of using plerixafor. We prospectively compared two consecutive cohorts of MM patients in first remission mobilized with G–CSF and non-myelosuppressive chemotherapy with vinorelbine or gemcitabine. The second cohort additionally received oral meloxicam. The cohorts comprised 84 patients without meloxicam (−M) and 66 patients with meloxicam (+M). Meloxicam was well tolerated and associated with similar hematologic engraftment after transplantation and equal survival rates. However, the meloxicam group had higher CD34+ cell levels on day 8 of the mobilization procedure (53 200 versus 35 600 CD34+ cells/mL; P=0.007), and fewer patients needed >1 collection day (+M: 6 (9%) patients versus −M: 16 (19%) patients; P=0.04). This resulted in reduced plerixafor administrations (+M: 7 (11%) patients versus −M: 18 (21%) patients; P=0.03) and less costs. Our data suggest that meloxicam enhances the mobilization of hematopoietic CD34+ blood cells in MM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  Google Scholar 

  2. Engelhardt M, Terpos E, Kleber M, Gay F, Wäsch R, Morgan G et al. European Myeloma Network. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica 2014; 99: 232–242.

    Article  CAS  Google Scholar 

  3. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996; 335: 91–97.

    Article  CAS  Google Scholar 

  4. Child JA, Morgan GJ, Davies FE, Owen RG, Bell SE, Hawkins K et al. Medical Research Council Adult Leukaemia Working Party. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003; 348: 1875–1883.

    Article  CAS  Google Scholar 

  5. Sonneveld P, Schmidt-Wolf IG, van der Holt B, El Jarari L, Bertsch U, Salwender H et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. J Clin Oncol 2012; 30: 2946–2955.

    Article  CAS  Google Scholar 

  6. Cavo M, Rajkumar SV, Palumbo A, Moreau P, Orlowski R, Bladé J et al. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. Blood 2011; 117: 6063–6073.

    Article  CAS  Google Scholar 

  7. Andre M, Baudoux E, Bron D, Canon JL, D'Hondt V, Fassotte MF et al. Phase III randomized study comparing 5 or 10 microg per kg per day of filgrastim for mobilization of peripheral blood progenitor cells with chemotherapy, followed by intensification and autologous transplantation in patients with nonmyeloid malignancies. Transfusion 2003; 43: 50–57.

    Article  CAS  Google Scholar 

  8. Awan F, Kochuparambil ST, Falconer DE, Cumpston A, Leadmon S, Watkins K et al. Comparable efficacy and lower cost of PBSC mobilization with intermediate-dose cyclophosphamide and G-CSF compared with plerixafor and G-CSF in patients with multiple myeloma treated with novel therapies. Bone Marrow Transplant 2013; 48: 1279–1284.

    Article  CAS  Google Scholar 

  9. Desikan KR, Barlogie B, Jagannath S, Vesole DH, Siegel D, Fassas A et al. Comparable engraftment kinetics following peripheral-blood stem-cell infusion mobilized with granulocyte colony-stimulating factor with or without cyclophosphamide in multiple myeloma. J Clin Oncol 1998; 16: 1547–1553.

    Article  CAS  Google Scholar 

  10. Hamadani M, Kochuparambil ST, Osman S, Cumpston A, Leadmon S, Bunner P et al. Intermediate-dose versus low-dose cyclophosphamide and granulocyte colony-stimulating factor for peripheral blood stem cell mobilization in patients with multiple myeloma treated with novel induction therapies. Biol Blood Marrow Transplant 2012; 18: 1128–1135.

    Article  CAS  Google Scholar 

  11. Samaras P, Pfrommer S, Seifert B, Petrausch U, Mischo A, Schmidt A et al. Efficacy of vinorelbine plus granulocyte colony-stimulation factor for CD34+ hematopoietic progenitor cell mobilization in patients with multiple myeloma. Biol Blood Marrow Transplant 2015; 21: 74–80.

    Article  CAS  Google Scholar 

  12. Bargetzi MJ, Passweg J, Baertschi E, Schoenenberger A, Gwerder C, Tichelli A et al. Mobilization of peripheral blood progenitor cells with vinorelbine and granulocyte colony-stimulating factor in multiple myeloma patients is reliable and cost effective. Bone Marrow Transplant 2003; 31: 99–103.

    Article  CAS  Google Scholar 

  13. Schmid A, Friess D, Mansouri Taleghani B, Keller P, Mueller BU, Baerlocher GM et al. Role of plerixafor in autologous stem cell mobilization with vinorelbine chemotherapy and granulocyte-colony stimulating factor in patients with myeloma: a phase II study (PAV-trial). Leuk Lymphoma 2015; 56: 608–614.

    Article  CAS  Google Scholar 

  14. Keller S, Seipel K, Novak U, Mansouri Taleghani B, Leibundgut K, Pabst T . Neurotoxicity of stem cell mobilization chemotherapy with vinorelbine in myeloma patients after bortezomib treatment. Leuk Res 2015; 39: 786–792.

    Article  CAS  Google Scholar 

  15. Mueller BU, Keller S, Seipel K, Mansouri Taleghani B, Leibundgut K, Pabst T . Stem cell mobilization chemotherapy with gemcitabine is effective and safe in myeloma patients with bortezomib-induced neurotoxicity. Leuk Lymphoma 2016; 57: 1122–1129.

    Article  CAS  Google Scholar 

  16. Demirer T, Buckner C, Gooley T, Appelbaum FR, Rowley S, Chauncey T et al. Factors influencing collection of peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transplant 1996; 17: 937–941.

    CAS  PubMed  Google Scholar 

  17. Perea G, Sureda A, Martino R, Altés A, Martínez C, Cabezudo E et al. Predictive factors for a successful mobilization of peripheral blood CD34+ cells in multiple myeloma. Ann Hematol 2001; 80: 592–597.

    Article  CAS  Google Scholar 

  18. DiPersio JF, Stadtmauer EA, Nademanee A, Micallef IN, Stiff PJ, Kaufman JL et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009; 113: 5720–5726.

    CAS  PubMed  Google Scholar 

  19. Hoggatt J, Mohammad KS, Singh P, Hoggatt AF, Chitteti BR, Speth JM et al. Differential stem and progenitor cell trafficking by prostaglandin E2. Nature 2013; 495: 365–369.

    Article  CAS  Google Scholar 

  20. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  Google Scholar 

  21. Ding L, Saunders TL, Enikolopov G, Morrison SJ . Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457–462.

    Article  CAS  Google Scholar 

  22. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  Google Scholar 

  23. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    Article  CAS  Google Scholar 

  24. Zhang J, Niu C, Ye L, He X, Tong WG, Ross J et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  Google Scholar 

  25. Hoggatt J, Singh P, Sampath J, Pelus LM . Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009; 113: 5444–5455.

    Article  CAS  Google Scholar 

  26. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007; 447: 1007–1011.

    Article  CAS  Google Scholar 

  27. Rinder HM, Tracey JB, Souhrada M, Wang C, Gagnier RP, Wood CCl . Effects of meloxicam on platelet function in healthy adults: a randomized, double-blind, placebo-controlled trial. J Clin Pharmacol 2002; 42: 881–886.

    Article  CAS  Google Scholar 

  28. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD . Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001; 41: 661–690.

    Article  CAS  Google Scholar 

  29. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  Google Scholar 

  30. Bethel M, Srour EF, Kacena MA . Hematopoietic cell regulation of osteoblast proliferation and differentiation. Curr Osteoporos Rep 2011; 9: 96–102.

    Article  Google Scholar 

  31. Hoggatt J, Pelus LM . Many mechanisms mediating mobilization: an alliterative review. Curr Opin Hematol 2011; 18: 231–238.

    Article  CAS  Google Scholar 

  32. Ahmed M, Khanna D, Furst DE . Meloxicam in rheumatoid arthritis. Expert Opin Drug Metabol Toxicol 2005; 1: 739–751.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the data management, the apheresis, the flow cytometry and the stem cell laboratory teams of the ASCT program at the University Hospital of Bern and its associated partner hospital and collaborators for documentation of data relevant for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Pabst.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Bone Marrow Transplantation website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeker, B., Novak, U., Mansouri Taleghani, B. et al. NSAID treatment with meloxicam enhances peripheral stem cell mobilization in myeloma. Bone Marrow Transplant 53, 175–179 (2018). https://doi.org/10.1038/bmt.2017.234

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2017.234

This article is cited by

Search

Quick links