Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective

Abstract

Although stem cell mobilization has been performed for more than 20 years, little is known about the effects of mobilizing agents on apheresis composition and the impact of graft cell subsets on patients’ outcome. With the increasing use of plerixafor and the inclusion of poor mobilizers in autologous transplant procedures, new parameters other than CD34+ stem cell dose are emerging; plerixafor seems to mobilize more primitive CD34+/CD38 stem cells compared with G-CSF, but their correlation with stable hematopoietic engraftment is still obscure. Immune recovery is as crucial as hematopoietic reconstitution, and higher T and natural killer cells infused within the graft have been correlated with better outcome in autologous transplant; recent studies showed increased mobilization of immune effectors with plerixafor compared with G-CSF, but further data are needed to clarify the clinical impact of these findings. In the allogeneic setting, much evidence suggests that mobilized T-cell alloreactivity is tempered by G-CSF, probably with the mediation of dendritic cells, even though no clear correlation with GVL and GVHD has been found. Plerixafor is not approved in healthy donors yet; early data suggest it might mobilize a GVHD protective balance of immune effectors, but further studies are needed to define its role in allogeneic transplant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hopman RK, Di Persio JF . Advances in stem cell mobilization. Blood Rev 2014; 28: 31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  PubMed  Google Scholar 

  3. Siena S, Schiavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  4. Allan DS, Keeney M, Howson-Jan K, Popma J, Weir K, Bhatia M et al. Number of viable CD34(+) cells re-infused predict engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 29: 867–972.

    Article  Google Scholar 

  5. Stiff PJ, Micallef I, Nademanee AP, Stadtmauer EA, Maziarz RT, Bolwell BJ et al. Transplanted CD34(+) cell dose is associated with long-term platelet count recovery following autologous peripheral blood stem cell transplant in patients with non-Hodgkin lymphoma or multiple myeloma. Biol Blood Marrow Transplant 2011; 17: 1146–1153.

    Article  CAS  PubMed  Google Scholar 

  6. Miller JS, McCullar V, Punzel M, Lemischka IR, Moore KA . Single adult human CD34(+)/Lin-/CD38(-) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells. Blood 1999; 93: 96–106.

    CAS  PubMed  Google Scholar 

  7. Rusten LS, Jacobsen SE, Kaalhus O, Veiby OP, Funderud S, Smeland EB . Functional differences between CD38- and DR- subfractions of CD34+ bone marrow cells. Blood 1994; 84: 1473–1481.

    CAS  PubMed  Google Scholar 

  8. Zubair AC, Kao G, Daley H, Schott D, Freedman A, Ritz J . CD34(+) CD38(-) and CD34(+) HLA-DR(-) cells in BM stem cell grafts correlate with short term engraftment but have no influence on long-term hematopoietic reconstitution after autologous transplantation. Cytotherapy 2006; 8: 399–407.

    Article  CAS  PubMed  Google Scholar 

  9. Taubert I, Saffrich R, Zepeda-Moreno A, Hellwig I, Eckstein V, Bruckner T et al. Characterization of hematopoietic stem cell subsets from patients with multiple myeloma after mobilization with plerixafor. Cytotherapy 2011; 13: 459–466.

    Article  CAS  PubMed  Google Scholar 

  10. Fruehauf S, Veldwijk MR, Seeger T, Schubert M, Laufs S, Topaly J et al. A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy 2009; 11: 992–1001.

    Article  CAS  PubMed  Google Scholar 

  11. Varmavuo V, Mäntymaa P, Nousiainen T, Valonen P, Kuittinen T, Jantunen E . Blood graft composition after plerixafor injection in patients with NHL. Eur J Haematol 2012; 89: 128–135.

    Article  CAS  PubMed  Google Scholar 

  12. Varmavuo V, Mäntymaa P, Silvennoinen R, Nousiainen T, Kuittinen T, Jantunen E . CD34+ cell subclasses and lymphocyte subsets in blood grafts collected after various mobilization methods in myeloma patients. Transfusion 2013; 53: 1024–1032.

    Article  CAS  PubMed  Google Scholar 

  13. Roug AS, Hokland LB, Segel E, Nielsen K, Toft-Petersen M, Van Kooten Niekerk PB et al. Unraveling stem cell and progenitor subsets in autologous grafts according to methods of mobilization: implications for prediction of hematopoietic recovery. Cytotherapy 2014; 16: 392–401.

    Article  CAS  PubMed  Google Scholar 

  14. Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP . Higher infused lymphocyte dose predicts higher lymphocyte recovery, which in turn, predicts superior overall survival following autologous hematopoietic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant 2008; 14: 116–124.

    Article  PubMed  Google Scholar 

  15. Porrata LF, Gastineau DA, Padley D, Bundy K, Markovic SN . Re-infused autologous graft natural killer cells correlates with absolute lymphocyte count recovery after autologous stem cell transplantation. Leuk Lymphoma 2003; 44: 997–1000.

    Article  CAS  PubMed  Google Scholar 

  16. Atta EH, de Azevedo AM, Maiolino A, Coelho CJ, Sarcinelli SM, de Alvarenga Máximo C et al. High CD8+ lymphocyte dose in the autograft predicts early absolute lym- phocyte count recovery after peripheral hematopoietic stem cell transplantation. Am J Hematol 2009; 84: 21–28.

    Article  PubMed  Google Scholar 

  17. Schmidmaier R, Then C, Schnabel B, Oduncu F, Baumann P, Straka C . CD4(+) CD28(+) lymphocytes on day 5 after high dose melphalan for multiple myeloma predict a low risk of infections during severe neutropenia and are associated with the number of reinfused T lymphocytes of the autologous stem cell graft. Cytotherapy 2011; 13: 987–992.

    Article  CAS  PubMed  Google Scholar 

  18. Gordan LN, Sugrue MW, Lynch JW, Williams KD, Khan SA, Mored JS . Correlation of early lymphocyte recovery and progressive- free survival after autologous stem-cell transplant in patients with Hodgkin’s and non-Hodgkin’s lymphoma. Bone Marrow Transplant 2003; 31: 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  19. Boulassel MR, Herr AL, deB Edwardes MD, Galal A, Lachance S, Laneuville P et al. Early lymphocyte recovery following autologous peripheral stemcell transplantation is associated with better survival in younger patients with lymphoproliferative disorders. Hematology 2006; 11: 165–170.

    Article  CAS  PubMed  Google Scholar 

  20. Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA et al. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant 2008; 14: 807–816.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Porrata LF, Gertz MA, Geyer SM, Litzow MR, Gastineau DA, Moore SB et al. The dose of infused lymphocytes in the autograft directly correlates with clinical outcome after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia 2004; 18: 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  22. Porrata LF, Litzow MR, Inwards DJ, Gastineau DA, Moore SB, Pineda AA et al. Infused peripheral blood autograft lymphocyte count correlated with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin’s lymphoma. Bone Marrow Transplant 2004; 33: 291–298.

    Article  CAS  PubMed  Google Scholar 

  23. Attal M, Lauwers-Cances V, Marit G, Caillot D, Moreau P, Facon T et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012; 366: 1782–1791.

    Article  CAS  PubMed  Google Scholar 

  24. Jantunen E, Fruehauf S . Importance of blood graft characteristics in auto-SCT: implications for optimizing mobilization regimens. Bone Marrow Transplant 2011; 46: 627–635.

    Article  CAS  PubMed  Google Scholar 

  25. Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP . The role of stem cell mobilization regimen on lymphocyte collection yield in patients with multiple myeloma. Cytotherapy 2008; 10: 507–517.

    Article  CAS  PubMed  Google Scholar 

  26. Ganguly S, Ross DB, Panoskaltsis-Mortari A, Kanakry CG, Blazar BR, Levy RB et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood 2014; 124: 2131–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaugler B, Arbez J, Legouill S, Tiberghien P, Moreau P, Derenne S et al. Characterization of peripheral blood stem cell grafts mobilized by granulocyte colony-stimulating factor and plerixafor compared with granulocyte colony-stimulating factor alone. Cytotherapy 2013; 15: 861–868.

    Article  CAS  PubMed  Google Scholar 

  28. Gazitt Y, Freytes CO, Akay C, Badel K, Calandra G . Improved mobilization of peripheral blood CD34+ cells and dendritic cells by AMD3100 plus granulocyte-colony-stimulating factor in non-Hodgkin's lymphoma patients. Stem Cells Dev 2007; 16: 657–666.

    Article  CAS  PubMed  Google Scholar 

  29. Varmavuo V, Mäntymaa P, Kuittinen T, Nousiainen T, Jantunen E . Blood graft lymphocyte subsets after plerixafor injection in non-Hodgkin’s lymphoma patients mobilizing poorly with chemotherapy plus granulocyte-colony-stimulating factor. Transfusion 2012; 52: 1785–1791.

    Article  CAS  PubMed  Google Scholar 

  30. Bernardini G, Sciume G, Bosisio D, Morrone S, Sozzani S, Santoni A . CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 2008; 111: 3626–3634.

    Article  CAS  PubMed  Google Scholar 

  31. Sheng L, Fu S, Hu Y, Fu H, Huang H . Rapid mobilization of fully functional natural killer cells into blood by AMD3100 [letter]. Transfusion 2013; 53: 2108–2110.

    Article  CAS  PubMed  Google Scholar 

  32. Holtan SG, Porrata LF, Micallef IN, Padley DJ, Inwards DJ, Ansell SA et al. AMD3100 affects autograft lymphocyte collection and progression-free survival in non-Hodgkin lymphoma. Clin Lymphoma Myeloma 2007; 7: 315–318.

    Article  CAS  PubMed  Google Scholar 

  33. Varmavuo V, Rimpiläinen J, Kuitunen H, Nihtinen A, Vasala K, Mikkola M et al. Engraftment and outcome after autologous stem cell transplantation in plerixafor-mobilized non-Hodgkin's lymphoma patients. Transfusion 2014; 54: 1243–1250.

    Article  CAS  PubMed  Google Scholar 

  34. Stem Cell Trialists’ Collaborative Group. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 2005; 23: 5074–5087.

    Article  Google Scholar 

  35. Schmitz N, Eapen M, Horowitz MM, Zhang MJ, Klein JP, Rizzo JD et al. Long-term outcome of patients given transplants of mobilized blood or bone marrow: a report from the International Bone Marrow Transplant Registry and the European Group for Blood and MarrowTransplantation. Blood 2006; 108: 4288–4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagler A, Labopin M, Shimoni A, Niederwieser D, Mufti GJ, Zander AR et al. Mobilized peripheral blood stem cells compared with bone marrow as the stem cell source for unrelated donor allogeneic transplantation with reduced-intensity conditioning in patients with acute myeloid leukemia in complete remission: an analysis from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 2012; 18: 1422–1429.

    Article  PubMed  Google Scholar 

  37. Nagler A, Labopin M, Shimoni A, Mufti GJ, Cornelissen JJ, Blaise D . Mobilized peripheral blood stem cells compared with bone marrow from HLA-identical siblings for reduced-intensity conditioning transplantation in acute myeloid leukemia in complete remission: a retrospective analysis from the Acute Leukemia Working Party of EBMT. Eur J Haematol 2012; 89: 206–213.

    Article  PubMed  Google Scholar 

  38. Jun HX, Jun CY, Yu ZX . In vivo induction of T-cell hyporesponsiveness and alteration of immunological cells of bone marrow grafts using granulocyte colony-stimulating factor. Haematologica 2004; 89: 1517–1524.

    CAS  PubMed  Google Scholar 

  39. Klangsinsirikul P, Russell NH . Peripheral blood stem cell harvests from G-CSF stimulated donors contain a skewed Th2 CD4 phenotype and a predominance of type 2 dendritic cells. Exp Hematol 2002; 30: 495–501.

    Article  CAS  PubMed  Google Scholar 

  40. Tayebi H, Kuttler F, Saas P, Lienard A, Petracca B, Lapierre V et al. Effect of granulocyte colony-stimulating factor mobilization on phenotypical and functional properties of immune cells. Exp Hematol 2001; 29: 458–470.

    Article  CAS  PubMed  Google Scholar 

  41. Franzke A, Piao W, Lauber J, Gatzlaff P, Könecke C, Hansen W et al. G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood 2003; 102: 734–739.

    Article  CAS  PubMed  Google Scholar 

  42. Mielcarek M, Graf L, Johnson G, Torok-Storb B . Production of interleukin-10 by granulocyte colony stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation. Blood 1998; 92: 215–222.

    CAS  PubMed  Google Scholar 

  43. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C . Granulocyte-colony stimulating factor mobilizes T helper 2 inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  PubMed  Google Scholar 

  44. Rutella S, Bonanno G, Pierelli L, Mariotti A, Capoluongo E, Contemi AM et al. Granulocyte colony-stimulating factor promotes the generation of regulatory DC through induction of IL-10 and IFN-alpha. Eur J Immunol 2004; 34: 1291–1302.

    Article  CAS  PubMed  Google Scholar 

  45. Lonial S, Akhtari M, Kaufman J, Torre C, Lechowicz MJ, Flowers C et al. Mobilization of hematopoietic progenitors from normal donors using the combination of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor results in fewer plasmacytoid dendritic cells in the graft and enhanced donor T cell engraftment with Th1 polarization: results from a randomized clinical trial. Biol Blood Marrow Transplant 2013; 19: 460–467.

    Article  CAS  PubMed  Google Scholar 

  46. Waller EK, Rosenthal H, Jones TW, Peel J, Lonial S, Langston A et al. Larger numbers of CD4(bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 2001; 97: 2948–2956.

    Article  CAS  PubMed  Google Scholar 

  47. Pan L, Teshima T, Hill GR, Bungard D, Brinson YS, Reddy VS et al. Granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation maintains graft-versus-leukemia effects through a perforin-dependent pathway while preventing graft-versus-host disease. Blood 1999; 93: 4071–4078.

    CAS  PubMed  Google Scholar 

  48. Abbi KKS, Zhu J, Ehmann WC, Epner E, Carraher M, Mierski J et al. G-CSF mobilized vs conventional donor lymphocytes for therapy of relapse or incomplete engraftment after allogeneic hematopoietic transplantation. Bone Marrow Transplant 2013; 48: 357–362.

    Article  CAS  PubMed  Google Scholar 

  49. MacDonald KP, Rowe V, Clouston AD, Welply JK, Kuns RD, Ferrara JL et al. Cytokine expanded myeloid precursors function as regulatory antigen presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol 2005; 174: 1841–1850.

    Article  CAS  PubMed  Google Scholar 

  50. Waller EK, Logan BR, Harris WAC, Devine SM, Porter DL, Mineishi S et al. Improved survival after transplantation of more donor plasmacytoid dendritic or naive T cells from unrelated- donor marrow grafts: results from BMTCTN 0201. J Clin Oncol 2014; 32: 2365–2372.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rutella S, Pierelli L, Bonanno G, Sica S, Ameglio F, Capoluongo E et al. Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood 2002; 100: 2562–2571.

    Article  CAS  PubMed  Google Scholar 

  52. MacDonald KP, Le Texier L, Zhang P, Morris H, Kuns RD, Lineburg KE et al. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10. J Immunol 2014; 192: 3180–3189.

    Article  CAS  PubMed  Google Scholar 

  53. Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J . High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 2006; 108: 1291–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 2007; 110: 433–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Su YC, Li SC, Hsu CK, Yu CC, Lin TJ, Lee CY et al. G-CSF downregulates natural killer cell-mediated cytotoxicity in donors for hematopoietic SCT. Bone Marrow Transplant 2012; 47: 73–81.

    Article  CAS  PubMed  Google Scholar 

  56. Martelli MF, Di Ianni M, Ruggeri L, Pierini A, Falzetti F, Carotti A et al. "Designed" grafts for HLA-haploidentical stem cell transplantation. Blood 2014; 123: 967–973.

    Article  CAS  PubMed  Google Scholar 

  57. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M et al. Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 2011; 51: 591–599.

    Article  CAS  PubMed  Google Scholar 

  58. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A et al. HLA-haploidentical transplantation with regulatory and conventional T cell adoptive immunotherapy prevents acute leukemia relapse. Blood 2014; 124: 638–644.

    Article  CAS  PubMed  Google Scholar 

  59. Schumm M, Lang P, Bethge W, Faul C, Feuchtinger T, Pfeiffer M et al. Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy 2013; 15: 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  60. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood 2014; 124: 822–826.

    Article  CAS  PubMed  Google Scholar 

  61. Lundqvist A, Smith AL, Takahashi Y, Wong S, Bahceci E, Cook L et al. Differences in the phenotype, cytokine gene expression profiles, and in vivo alloreactivity of T cells mobilized with plerixafor compared with G-CSF. J Immunol 2013; 191: 6241–6249.

    Article  CAS  PubMed  Google Scholar 

  62. Kean LS, Sen S, Onabajo O, Singh K, Robertson J, Stempora L et al. Significant mobilization of both conventional and regulatory T cells with AMD3100. Blood 2011; 118: 6580–6590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rutella S, Filippini P, Bertaina V, Li Pira G, Altomare L, Ceccarelli S et al. Mobilization of healthy donors with plerixafor affects the cellular composition of T-cell receptor (TCR)-αβ/CD19 depleted haploidentical stem cell grafts. J Transl Med 2014; 12: 240.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Devine SM, Vij R, Rettig M, Todt L, McGlauchlen K, Fisher N et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 2008; 112: 990–998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Saraceni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraceni, F., Shem-Tov, N., Olivieri, A. et al. Mobilized peripheral blood grafts include more than hematopoietic stem cells: the immunological perspective. Bone Marrow Transplant 50, 886–891 (2015). https://doi.org/10.1038/bmt.2014.330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2014.330

This article is cited by

Search

Quick links