Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A phase I trial of immunotherapy with intratumoral adenovirus-interferon-gamma (TG1041) in patients with malignant melanoma

Abstract

Aims: Interferon-gamma (IFN-γ) has been shown to upregulate MHC class I and II expression, and to promote generation of specific antitumor immune responses. We hypothesized that intratumoral administration of an IFN-γ gene transfer vector facilitates its enhanced local production and may activate effector cells locally. We conducted a phase I dose-escalation study of a replication-deficient adenovirus–interferon-gamma construct (TG1041) to determine safety and tolerability of intratumoral administration, in advanced or locally recurrent melanoma. Methods: Patients were enrolled at four successive dose levels: 107 infectious units (iu) (n=3), 108 iu (n=3), 109 iu (n=3), and 1010 iu (n=2) per injection per week for 3 weeks. TG1041 was injected in the same tumor nodule weekly in each patient. Safety, toxicity, local and distant tumor responses and biologic correlates were evaluated. Results: A total of 11 patients were enrolled and received the planned three injections per cycle. One patient with stable disease received a second cycle of treatment. A maximum tolerated dose was not reached in this study. No grade 4 toxicities were observed. Two grade 3 toxicities, fever and deep venous thrombosis were observed in one patient. The most frequently reported toxicities were grade 1 pain and redness at the injected site (n=8), and grade 1 fatigue (n=5) patients. Clinical changes observed at the local injected tumor site included erythema (n=5), a minor decrease in size of the injected lesion (n=5) and significant central necrosis by histopathology (n=1). Systemic effects included stable disease in one patient. Correlative studies did not reveal evidence of immunologic activity. Conclusion: Weekly intratumoral administration of TG1041 appears to be safe and well tolerated in patients with advanced melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Isaacs A, Lindenmann J . Virus interference. 1. The interferon. Proc R Soc Lond Biol Sci. 1987;5:429–438.

    Google Scholar 

  2. Weber JS, Rosenberg SA . Modulation of murine tumor major histocompatibility antigens by cytokines in vivo and in vitro. Cancer Res. 1988;48:5818–5824.

    CAS  PubMed  Google Scholar 

  3. Boyer CM, Dawson DV, Neal SE, et al. Differential induction by interferons of major histocompatibility complex-encoded and non-major histocompatibility complex-encoded antigens in human breast and ovarian carcinoma cell lines. Cancer Res. 1989;49:2928–2934.

    CAS  PubMed  Google Scholar 

  4. Nistico P, Tecce R, Giacomini P, et al. Effect of recombinant human leukocyte, fibroblast, and immune interferons on expression of class I and II major histo-compatibility complex and invariant chain in early passage human melanoma cells. Cancer Res. 1990;50:7422–7429.

    CAS  PubMed  Google Scholar 

  5. Beniers AJ, Peelen WP, Debruyne FM, et al. HLA-class-I and -class-II expression on renal tumor xenografts and the relation to sensitivity for alpha-IFN, gamma-IFN and TNF. Int J Cancer. 1991;48:709–716.

    Article  CAS  Google Scholar 

  6. Restifo NP, Esquivel F, Asher AL, et al. Defective presentation of endogenous antigens by a murine sarcoma. Implications for the failure of an anti-tumor immune response. J Immunol. 1991;147:1453–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Restifo NP, Esquivel F, Kawakami Y, et al. Identification of human cancers deficient in a antigen processing. J Exp Med. 1993;177:265–272.

    Article  CAS  Google Scholar 

  8. Carrel S, Schmidt-Kessen A, Giuffre L . Recombinant interferon-gamma can induce the expression of HLA-DR and -DC on DR-negative melanoma cells and enhance the expression of HLA-ABC and tumor-associated antigens. Eur J Immunol. 1985;15:118–123.

    Article  CAS  Google Scholar 

  9. Guadagni F, Roselli M, Schlom J, et al. In vitro and in vivo regulation of human tumor antigen expression by human recombinant interferons: a review. Int J Biol Markers. 1994;9:53–60.

    Article  CAS  Google Scholar 

  10. Goodenow RS, Vogel JM, Linsk RL . Histocompatibility antigens on murine tumors. Science. 1985;230:777–783.

    Article  CAS  Google Scholar 

  11. Adams DO, Hamilton TA . The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318.

    Article  CAS  Google Scholar 

  12. Baratin M, Ziol M, Romieu R, et al. Regression of primary hepatocarcinoma in cancer-prone transgenic mice by local interferon-gamma delivery is associated with macrophages recruitment and nitric oxide production. Cancer Gene Ther. 2001;8:193–202.

    Article  CAS  Google Scholar 

  13. Griffith TS, Wiley SR, Kubin MZ, et al. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med. 1999;189:1343–1354.

    Article  CAS  Google Scholar 

  14. Schreiber RD, Celada A . Molecular characterization of interferon gamma as a macrophage activating factor. Lymphokines. 1985;11:87–118.

    CAS  Google Scholar 

  15. Seliger B, Hammers S, Hohne A, et al. IFN-gamma-mediated coordinated transcriptional regulation of the human TAP-1 and LMP-2 genes in human renal cell carcinoma. Clin Cancer Res. 1997;3:573–578.

    CAS  PubMed  Google Scholar 

  16. White CA, Thomson SA, Cooper L, et al. Constitutive transduction of peptide transporter and HLA genes restores antigen processing function and cytotoxic T cell-mediated immune recognition of human melanoma cells. Int J Cancer. 1998;75:590–595.

    Article  CAS  Google Scholar 

  17. Nastala CL, Edington HD, McKinney TG, et al. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol. 1994;153:1697–1706.

    CAS  PubMed  Google Scholar 

  18. Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521.

    Article  CAS  Google Scholar 

  19. Brunda MJ . Interleukin-12. J Leukoc Biol. 1994;55:280–288.

    Article  CAS  Google Scholar 

  20. Coughlin CM, Salhany KE, Gee MS, et al. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity. 1998;9:25–34.

    Article  CAS  Google Scholar 

  21. Belperio JA, Keane MP, Arenberg DA, et al. CXC chemokines in angiogenesis. J Leukoc Biol. 2000;68:1–8.

    CAS  PubMed  Google Scholar 

  22. Keane MP, Belperio JA, Arenberg DA, et al. IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol. 1999;163:5686–5692.

    CAS  PubMed  Google Scholar 

  23. Addison CL, Daniel TO, Burdick MD, et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol. 2000;165:5269–5277.

    Article  CAS  Google Scholar 

  24. Creagan ET, Loprinzi CL, Ahmann DL, et al. A phase I–II trial of the combination of recombinant leukocyte A interferon and recombinant human interferon-gamma in patients with metastatic malignant melanoma. Cancer. 1988;62:2472–2474.

    Article  CAS  Google Scholar 

  25. Osanto S, Jansen R, Naipal AM, et al. In vivo effects of combination treatment with recombinant interferon-gamma and -alpha in metastatic melanoma. Int J Cancer. 1989;43:1001–1006.

    Article  CAS  Google Scholar 

  26. Kurzrock R, Talpaz M, Kantarjian H, et al. Therapy of chronic myelogenous leukemia with recombinant interferon-gamma. Blood. 1987;70:943–947.

    CAS  PubMed  Google Scholar 

  27. Windbichler GH, Hausmaninger H, Stummvoll W, et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br J Cancer. 2000;82:1138–1144.

    Article  CAS  Google Scholar 

  28. Kim CJ, Taubenberger JK, Simonis TB, et al. Combination therapy with interferon-gamma and interleukin-2 for the treatment of metastatic melanoma. J Immunother Emphasis Tumor Immunol. 1996;19:50–58.

    Article  CAS  Google Scholar 

  29. Porgador A, Bannerji R, Watanabe Y, et al. Antimetastatic vaccination of tumor-bearing mice with two types of IFN-gamma gene-inserted tumor cells. J Immunol. 1993;150:1458–1470.

    CAS  PubMed  Google Scholar 

  30. Lusky M, Grave L, Dieterle A, et al. Regulation of adenovirus-mediated transgene expression by the viral E4 gene products: requirement for E4 ORF3. J Virol. 1999;73:8308–8319.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Slos P, DeMeyer M, Andre M . Intratumoral delivery of interferon-gamma cDNA with an adenoviral vector in combination with systemic chemotherapy: pre-clinical studies in murine models. Cancer Gene Ther. 2000;7:80–81.

    Google Scholar 

  32. Schiller JH, Pugh M, Kirkwood JM, et al. Eastern cooperative group trial of interferon gamma in metastatic melanoma: an innovative study design. Clin Cancer Res. 1996;2:29–36.

    CAS  PubMed  Google Scholar 

  33. Romero P, Pittet MJ, Valmori D, et al. Immune monitoring in cancer immunotherapy. Ernst Schering Res Found Workshop. 2000;30:75–97.

    CAS  Google Scholar 

  34. Deichmann M, Benner A, Waldmann V, et al. Interleukin-6 and its surrogate C-reactive protein are useful serum markers for monitoring metastasized malignant melanoma. J Exp Clin Cancer Res. 2000;19:301–307.

    CAS  PubMed  Google Scholar 

  35. Grimm EA, Smid CM, Lee JJ, et al. Unexpected cytokines in serum of malignant melanoma patients during sequential biochemotherapy. Clin Cancer Res. 2000;6:3895–3903.

    CAS  PubMed  Google Scholar 

  36. de Metz J, Hack CE, Romijn JA, et al. Interferon-gamma in healthy subjects: selective modulation of inflammatory mediators. Eur J Clin Invest. 2001;31:536–543.

    Article  CAS  Google Scholar 

  37. Martinetti A, Seregni E, Belli F, et al. Evaluation on serum 2′-5′oligoadenylate synthetase (2′-5′oligoAS) and beta 2 microglobulin (B2 M) in patients with nodal metastases from cutaneous malignant melanoma treated with rIFN-alpha 2A. Anticancer Res. 1998;18:2027–2030.

    CAS  PubMed  Google Scholar 

  38. Fujii S, Huang S, Fong TC, et al. Induction of melanoma-associated antigen systemic immunity upon intratumoral delivery of interferon-gamma retroviral vector in melanoma patients. Cancer Gene Ther. 2000;7:1220–1230.

    Article  CAS  Google Scholar 

  39. Henney CS, Kuribayashi K, Kern DE, et al. Interleukin-2 augments natural killer cell activity. Nature. 1981;291:335–338.

    Article  CAS  Google Scholar 

  40. Trinchieri G, Matsumoto-Kobayashi M, Clark SC, et al. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984;160:1147–1169.

    Article  CAS  Google Scholar 

  41. Malkovsky M, Loveland B, North M, et al. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature. 1987;325:262–265.

    Article  CAS  Google Scholar 

  42. Itoh K, Shiiba K, Shimizu Y, et al. Generation of activated killer (AK) cells by recombinant interleukin 2 (rIL 2) in collaboration with interferon-gamma (IFN-gamma). J Immunol. 1985;134:3124–3129.

    CAS  PubMed  Google Scholar 

  43. Rosenberg SA, Schwarz SL, Spiess PJ . Combination immunotherapy for cancer: synergistic antitumor interactions of interleukin-2, alfa interferon, and tumor-infiltrating lymphocytes. J Natl Cancer Inst. 1988;80:1393–1397.

    Article  CAS  Google Scholar 

  44. McAdam A, Pulaski B, Harkins S, et al. Coexpression of IL-2 and gamma-IFN enhances tumor immunity. Ann N Y Acad Sci. 1993;690:349–351.

    Article  CAS  Google Scholar 

  45. Maraskovsky E, Chen WF, Shortman K . IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells. J Immunol. 1989;143:1210–1214.

    CAS  PubMed  Google Scholar 

  46. Agah R, Malloy B, Sherrod A, et al. Successful therapy of natural killer-resistant pulmonary metastases by the synergism of gamma-interferon with tumor necrosis factor and interleukin-2 in mice. Cancer Res. 1988;48:2245–2248.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Rosenblatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorana, A., Rosenblatt, J., Sahasrabudhe, D. et al. A phase I trial of immunotherapy with intratumoral adenovirus-interferon-gamma (TG1041) in patients with malignant melanoma. Cancer Gene Ther 10, 251–259 (2003). https://doi.org/10.1038/sj.cgt.7700568

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700568

Keywords

This article is cited by

Search

Quick links