Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A convenient cancer vaccine therapy with in vivo transfer of interleukin 12 expression plasmid using gene gun technology after priming with irradiated carcinoma cells

Abstract

We studied interleukin (IL)-12 gene therapy using a gene gun as a new autologous vaccination strategy for cancer. In the first experiment, BALB/c mice were inoculated with syngeneic murine renal cancer cells (Renca) intradermally in the abdomen. This was followed by an injection of IL-12 expression plasmid using the gene gun. About 40% of the mice exhibited rejection of the tumor after the treatment and these mice also acquired immunological resistance against a secondary challenge with Renca cells. Based on these results, we examined whether antitumor activity can be potentiated when mice undergo combination treatment with intradermal inoculation of irradiated Renca cells and transfection with IL-12 gene. Inoculation of irradiated Renca cells alone was partially effective in inducing antitumor immunity, whereas the combined treatment remarkably intensified this effect. Moreover, this combined treatment inhibited tumor establishment and enhanced survival of the mice with tumor infiltration by CD4+ and CD8+ T cells, even when the treatment was started after tumor-implantation at a distant site. This antitumor effect was antigen specific and we confirmed the induction of antitumor cytotoxic T cells by this treatment. These results show that local cutaneous transfer of IL-12 expression plasmid using gene gun technology enhances systemic and specific antitumor immunity primed by irradiated tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gately MK, Desai BB, Wolitzky AG et al. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor) J Immunol 1991 147: 874–882

    CAS  PubMed  Google Scholar 

  2. Hsieh CS, Macatonia SE, Tripp CS et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages Science 1993 260: 547–549

    Article  CAS  PubMed  Google Scholar 

  3. Kobayashi M, Fitz L, Ryan M et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes J Exp Med 1989 170: 827–845

    Article  CAS  PubMed  Google Scholar 

  4. Sgadari C, Angiolillo AL, Tosato G . Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10 Blood 1996 87: 3877–3882

    CAS  PubMed  Google Scholar 

  5. Brunda MJ, Luistro L, Warrier RR et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors J Exp Med 1993 178: 1223–1230

    Article  CAS  PubMed  Google Scholar 

  6. Motzer RJ, Rakhit A, Schwartz LH et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma Clin Cancer Res 1998 4: 1183–1191

    CAS  PubMed  Google Scholar 

  7. Marshall E . Cancer trial of interleukin-12 halted Science 1995 268: 1555

    Article  Google Scholar 

  8. Rakhmilevich AL, Janssen K, Turner J et al. Cytokine gene therapy of cancer using gene gun technology: superior antitumor activity of interleukin-12 Hum Gene Ther 1997 8: 1303–1311

    Article  CAS  PubMed  Google Scholar 

  9. Rakhmilevich AL, Timmins JG, Janssen K et al. Gene gun–mediated IL-12 gene therapy induces antitumor effects in the absence of toxicity: a direct comparison with systemic IL-12 protein therapy J Immunother 1999 22: 135–144

    Article  CAS  PubMed  Google Scholar 

  10. Rakhmilevich AL, Turner J, Ford MJ et al. Gene gun–mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors Proc Natl Acad Sci USA 1996 93: 6291–6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nanni P, Rossi I, De Giovanni C et al. Interleukin 12 gene therapy of MHC-negative murine melanoma metastases Cancer Res 1998 58: 1225–1230

    CAS  PubMed  Google Scholar 

  12. Sakai T, Hisaeda H, Nakano Y et al. Gene gun–mediated delivery of an interleukin-12 expression plasmid protects against infections with the intracellular protozoan parasites Leishmania major and Trypanosoma cruzi in mice Immunology 2000 99: 615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matzinger P . The JAM test. A simple assay for DNA fragmentation and cell death J Immunol Methods 1991 145: 185–192

    Article  CAS  PubMed  Google Scholar 

  14. Tannenbaum CS, Tubbs R, Armstrong D et al. The CXC chemokines IP-10 and Mig are necessary for IL-12–mediated regression of the mouse RENCA tumor J Immunol 1998 161: 927–932

    CAS  PubMed  Google Scholar 

  15. Condon C, Watkins SC, Celluzzi CM et al. DNA-based immunization by in vivo transfection of dendritic cells Nat Med 1996 2: 1122–1128

    Article  CAS  PubMed  Google Scholar 

  16. Porgador A, Irvine KR, Iwasaki A et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization J Exp Med 1998 188: 1075–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akbari O, Panjwani N, Garcia S et al. DNA vaccination: transfection and activation of dendritic cells as key events for immunity J Exp Med 1999 189: 169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jondal M, Schirmbeck R, Reimann J . MHC class I–restricted CTL responses to exogenous antigens Immunity 1996 5: 295–302

    Article  CAS  PubMed  Google Scholar 

  19. Sigal LJ, Crotty S, Andino R et al. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen Nature 1999 398: 77–80

    Article  CAS  PubMed  Google Scholar 

  20. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I–restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  21. Ronchetti A, Rovere P, Iezzi G et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines J Immunol 1999 163: 130–136

    CAS  PubMed  Google Scholar 

  22. Cella M, Scheidegger D, Palmer-Lehmann K et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation J Exp Med 1996 184: 747–752

    Article  CAS  PubMed  Google Scholar 

  23. Nishioka Y, Hirao M, Robbins PD et al. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12 Cancer Res 1999 59: 4035–4041

    CAS  PubMed  Google Scholar 

  24. Vissers JL, De Vries IJ, Schreurs MW et al. The renal cell carcinoma–associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1–restricted epitope recognized by cytotoxic T lymphocytes Cancer Res 1999 59: 5554–5559

    CAS  PubMed  Google Scholar 

  25. Flad T, Spengler B, Kalbacher H et al. Direct identification of major histocompatibility complex class I–bound tumor-associated peptide antigens of a renal carcinoma cell line by a novel mass spectrometric method Cancer Res 1998 58: 5803–5811

    CAS  PubMed  Google Scholar 

  26. Gaudin C, Kremer F, Angevin E et al. A hsp70-2 mutation recognized by CTL on a human renal cell carcinoma JImmunol 1999 162: 1730–1738

    CAS  Google Scholar 

  27. Kugler A, Stuhler G, Walden P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell–dendritic cell hybrids Nat Med 2000 6: 332–336

    Article  CAS  PubMed  Google Scholar 

  28. Childs R, Chernoff A, Contentin N et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation N Engl J Med 2000 343: 750–758

    Article  CAS  PubMed  Google Scholar 

  29. Luboldt HJ, Kubens BS, Rubben H et al. Selective loss of human leukocyte antigen class I allele expression in advanced renal cell carcinoma Cancer Res 1996 56: 826–830

    CAS  PubMed  Google Scholar 

  30. Brasanac D, Muller CA, Muller GA et al. HLA class I antigens expression in renal cell carcinoma: histopathological and clinical correlation J Exp Clin Cancer Res 1999 18: 505–510

    CAS  PubMed  Google Scholar 

  31. Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity Proc Natl Acad Sci USA 1993 90: 3539–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tahara H, Zitvogel L, Storkus WJ et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector J Immunol 1995 154: 6466–6474

    CAS  PubMed  Google Scholar 

  33. Tani K, Nakazaki Y, Hase H et al. Progress reports on immune gene therapy for stage IV renal cell cancer using lethally irradiated granulocyte–macrophage colony-stimulating factor-transduced autologous renal cancer cells Cancer Chemother Pharmacol 2000 Suppl 46: S73–S76

    Article  Google Scholar 

  34. Wittig B, Marten A, Dorbic T et al. Therapeutic vaccination against metastatic carcinoma by expression-modulated and immunomodified autologous tumor cells: a first clinical phase I/II trial Hum Gene Ther 2001 12: 267–278

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt-Wolf IG, Finke S, Trojaneck B et al. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma Br J Cancer 1999 81: 1009–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in-aid for Scientific Research (C) (Grant No. 12671536) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa-aki Nishitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishitani, Ma., Sakai, T., Ishii, K. et al. A convenient cancer vaccine therapy with in vivo transfer of interleukin 12 expression plasmid using gene gun technology after priming with irradiated carcinoma cells. Cancer Gene Ther 9, 156–163 (2002). https://doi.org/10.1038/sj.cgt.7700419

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700419

Keywords

This article is cited by

Search

Quick links