Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The genetics of the amyloidoses: interactions with immunity and inflammation

Abstract

Historically, the amyloidoses have been associated with inflammation and the immune response. From Virchow's original description in human pathologic inflammatory states through their identification in horses used to produce antitoxin to their frequent occurrence in the course of multiple myeloma and a somewhat abortive designation as ‘gammaloid’, the disorders were felt to have an inflammatory origin. These presumptive associations antedated the availability of a reliable method for tissue extraction that would allow chemical analysis of the major deposited molecules. With the identification of the multiple precursors and the realization that most were not intrinsic elements of immune/inflammatory pathways, the investigative emphasis shifted to the analysis of the biophysical events involved in aggregation and fibril formation. As more in vivo models and better tools for examination of tissues have become available, it appears as if inflammation may participate as both a response to, and an amplifier of, the effects of the fibrillar aggregates. Hence, while only a limited number of amyloid protein precursors are involved in immunity and inflammation per se, host defense, in its broadest sense, is likely to be involved in the clinically relevant amyloidoses. Further it now appears that harnessing the immune respone in an appropriate fashion may be able to play a role in treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Virchow R . Über den Gang der amyloiden degeneration. Virchows Arch 1855; 8: 364–368.

    Google Scholar 

  2. Osserman E, Takatsuki K, Talal N . Multiple myeloma. The pathogenesis of ‘amyloidosis’. Studies on the role of abnormal gamma globulins and gamma globulin fragments of the Bence Jones (L-polypeptide) type in the pathogenesis of ‘primary’ and ‘secondary’ amyloidosis and the ‘amyloidosis’ associated with plasma cell myeloma. Semin in Hematol 1964; 1: 3–86.

    CAS  Google Scholar 

  3. Pepys MB . Amyloidosis. Annu Rev Med 2005; 57: 223–241.

    Google Scholar 

  4. Gallo G, Wisniewski T, Choi-Miura NH, Ghiso J, Frangione B . Potential role of apolipoprotein-E in fibrillogenesis. Am J Pathol 1994; 145: 526–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kisilevsky R . The relation of proteoglycans, serum amyloid P and apo E to amyloidosis current status, 2000. Amyloid 2000; 7: 23–25.

    CAS  PubMed  Google Scholar 

  6. Cohen AS, Calkins E . Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 1959; 183: 1902.

    Google Scholar 

  7. Glenner GG . Amyloid deposits and amyloidosis. The β-fibrilloses (first of two parts). N Eng J Med 1980; 302: 1283–1292.

    CAS  Google Scholar 

  8. Glenner GG . Amyloid deposits and amyloidosis. The β-fibrilloses (second of two parts). N Eng J Med 1980; 302: 1333–1343.

    CAS  Google Scholar 

  9. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S et al. Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2005; 12: 1–4.

    CAS  PubMed  Google Scholar 

  10. Conway KA, Harper JD, Lansbury PT . Accelerated in vitro fibril formation by a mutant alpha synuclein linked to early-onset Parkinson's Disease. Nat Med 1998; 4: 1318–1320.

    CAS  PubMed  Google Scholar 

  11. Harjes P, Wanker EE . The hunt for Huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 2003; 28: 425–433.

    CAS  PubMed  Google Scholar 

  12. Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 1999; 96: 3590–3594.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Barnhart MM, Chapman MR . Curli biogenesis and function. Annu Rev Microbiol 2006; 60 (in press).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. True HL, Lindquist SL . A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000; 407: 477–483.

    CAS  PubMed  Google Scholar 

  15. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW . Functional amyloid formation within mammalian tissue. PLoS Biol 2005; 4: e6.

    PubMed Central  Google Scholar 

  16. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 1999; 19: 8876–8884.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN . Tissue damage in the amyloidoses: Transthyretin monomers and non-native oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 2004; 101: 2817–2822.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Magrane J, Smith RC, Walsh K, Querfurth HW . Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 2004; 24: 1700–1706.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown WM, Lange EM, Chen H, Zheng SL, Chang B, Wiley KE et al. Hereditary prostate cancer in African American families: linkage analysis using markers that map to five candidate susceptibility loci. Br J Cancer 2004; 90: 510–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Johansson B, Wernstedt C, Westermark P . Atrial natriuretic peptide deposited as atrial amyloid fibrils. Biochem Biophys Res Commun 1987; 148: 1087–1092.

    CAS  PubMed  Google Scholar 

  21. Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T et al. A new form of amyloid protein associated with chronic hemodialysis was identified as B2-microglobulin. Biochem Biophys Res Commun 1985; 129: 701–706.

    CAS  PubMed  Google Scholar 

  22. Clark A, de Koning EJP, Morris JF . Formation of islet amyloid from islet amyloid polypeptide. Biochem Soc Trans 1993; 21: 169–173.

    CAS  PubMed  Google Scholar 

  23. Hardy J, Selkoe DJ . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356.

    CAS  PubMed  Google Scholar 

  24. Eulitz M, Breuer M, Eblens A, Linke R . Production of amyloidogenic peptides from human immunoglobulin light chains. Amyloid Amyloidosis 1990: 505–509.

  25. Kluve-Beckerman B, Manaloor JJ, Liepnieks JJ . A pulse-chase study tracking the conversion of macrophage-endocytosed serum amyloid A into extracellular amyloid. Arthritis Rheum 2002; 46: 1905–1913.

    CAS  PubMed  Google Scholar 

  26. Foss TR, Wiseman RL, Kelly JW . The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry 2005; 44: 15525–15533.

    CAS  PubMed  Google Scholar 

  27. Come JH, Fraser PE, Lansbury Jr PT . A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci USA 1993; 90: 5959–5963.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Saad MF, Ordonez NG, Rashid RK, Guido JJ, Hill CS, Hickey RC et al. Medullary carcinoma of the thyroid: a study of the clinical features and prognostic factors in 161 patients. Medicine 1984; 63: 319–342.

    CAS  PubMed  Google Scholar 

  29. Sletten K, Westermark P . Characterization of molecular forms of calcitonin in amyloid fibrils from medullary carcinoma of the thyroid. Amyloid Amyloidosis 1990; 113: 477–480.

    Google Scholar 

  30. Verga U, Fugazzola L, Cambiaghi S, Pritelli C, Alessi E, Cortelazzi D et al. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin Endocrinol (Oxf) 2003; 59: 156–161.

    CAS  Google Scholar 

  31. Huilgol SC, Ramnarain N, Carrington P, Leigh IM, Black MM . Cytokeratins in primary cutaneous amyloidosis. Australas J Dermatol 1998; 39: 81–85.

    CAS  PubMed  Google Scholar 

  32. Centola M, Aksentijevich I, Kastner DL . The hereditary periodic fever syndromes: molecular analysis of a new family of inflammatory diseases [Review]. Hum Mol Genet 1998; 7: 1581–1588.

    CAS  PubMed  Google Scholar 

  33. Saraiva MJ, Costa PP, Goodman DS . Studies on plasma transthyretin (prealbumin) in familial amyloidotic polyneuropathy, Portuguese type. J Lab Clin Med 1983; 102: 590–603.

    CAS  PubMed  Google Scholar 

  34. Benson MD, Liepnieks J, Uemichi T, Wheeler G, Correa R . Hereditary renal amyloidosis associated with a mutant fibrinogen α-chain. Nat Genet 1993; 3: 252–255.

    CAS  PubMed  Google Scholar 

  35. Levy E, Haltia M, Fernandez-Madrid I, Koivunen O, Ghiso J, Prelli F et al. Mutation in gelsolin gene in Finnish hereditary amyloidosis. J Exp Med 1990; 172: 1865–1867.

    CAS  PubMed  Google Scholar 

  36. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 1991; 353: 844–846.

    CAS  PubMed  Google Scholar 

  37. Nichols WC, Dwulet FE, Liepnieks J, Benson MD . Variant apolipoprotein AI as a major constituent of human hereditary amyloid. Biochemical and Biophysical Research Communications 1988; 156: 762–768.

    CAS  PubMed  Google Scholar 

  38. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK et al. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 1993; 362: 553–557.

    CAS  PubMed  Google Scholar 

  39. Cohen DH, Feiner H, Jensson O, Frangione B . Amyloid fibril in hereditary cerebral hemorrhage with amyloidosis (HCHWA) is related to the gastroentero-pancreatic neuroendocrine protein, gamma trace. J Exp Med 1983; 158: 623–628.

    CAS  PubMed  Google Scholar 

  40. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995; 376: 775–778.

    CAS  PubMed  Google Scholar 

  41. Kovacs DM, Tanzi RE . Monogenic determinants of familial Alzheimer's disease: presenilin-1 mutations. Cell Mol Life Sci 1998; 54: 902–909.

    CAS  PubMed  Google Scholar 

  42. Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 1997; 3: 67–72.

    CAS  PubMed  Google Scholar 

  43. Buxbaum JN . Mechanisms of disease: monoclonal immunoglobulin deposition. Hemat/Oncol Clin NA 1993; 6: 323–346.

    Google Scholar 

  44. Kyle RA, Lust JA . Monoclonal gammopathies of undetermined significance. In: Wiernik PH, Canellos GP, Kyle RA, Schiffer CA (eds) Neoplastic Diseases of the Blood. New York: Churchill Livingstone, 1991, pp 571–594.

    Google Scholar 

  45. Avet-Loiseau H, Facon T, Grosbois B, Magrangeas F, Rapp MJ, Harousseau JL et al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 2002; 99: 2185–2191.

    CAS  PubMed  Google Scholar 

  46. Stevens FJ . Four structural risk factors identify most fibril-forming kappa light chains. Amyloid 2000; 7: 200–211.

    CAS  PubMed  Google Scholar 

  47. Abraham RS, Geyer SM, Price-Troska TL, Allmer C, Kyle RA, Gertz MA et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain associated amyloidosis (AL). Blood 2003; 101: 3801–3807.

    CAS  PubMed  Google Scholar 

  48. Grosbois B, Jego P, Attal M, Payen C, Rapp MJ, Fuzibet JG et al. Familial multiple myeloma: report of fifteen families. Br J Haematol 1999; 105: 768–770.

    CAS  PubMed  Google Scholar 

  49. Miliani A, Bergesio F, Salvadori M, Ciciani AM, Merlini GP, Di Guglielmo R et al. Systemic amyloidosis and monoclonal gammopathy in three Italian siblings: a familian case of AL-amyloidosis?. In: Natvig JB, Förre Ö, Husby G, Husebekk A, Skogen B, Sletten K, Westermark P (eds) Amyloid and Amyloidosis: VIth International Symposium on Amyloidosis, 5–8 August 1990, Oslo, Norway. Kluwer Academic Publishers: Dordrecht, 1990, pp 227–230.

    Google Scholar 

  50. Gertz MA, Garton JP, Kyle RA . Primary amyloidosis (AL) in families. Am J Hematol 1986; 22: 193–198.

    CAS  PubMed  Google Scholar 

  51. Landgren O, Gridley G, Turesson I, Caporaso NE, Goldin LR, Baris D et al. Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African-American and White veterans in the US. Blood 2006; 107: 904–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Buck FS, Koss MN, Sherrod AE, Wu A, Takahashi M . Ethnic distribution of amyloidosis: an autopsy study. Mod Pathol 1989; 2: 372–377.

    CAS  PubMed  Google Scholar 

  53. Schaffer J, Floege J, Koch KM . Clinical aspects of dialysis-related amyloidosis. Contr Nephrol 1995; 112: 90–96.

    CAS  Google Scholar 

  54. Koda Y, Nishi S, Miyazaki S, Haginoshita S, Sakurabayashi T, Suzuki M et al. Switch from conventional to high-flux membrane reduces the risk of carpal tunnel syndrome and mortality of hemodialysis patients. Kidney Int 1997; 52: 1096–1101.

    CAS  PubMed  Google Scholar 

  55. Schwalbe S, Holzhauer M, Schaeffer J, Galanski M, Koch KM, Floege J . Beta 2-microglobulin associated amyloidosis: a vanishing complication of long-term hemodialysis? Kidney Int 1997; 52: 1077–1083.

    CAS  PubMed  Google Scholar 

  56. Gertz MA, Kyle RA . Secondary systemic amyloidosis: response and survival in 64 patients. Medicine 1991; 70: 246–256.

    CAS  PubMed  Google Scholar 

  57. Chait A, Han CY, Oram JF, Heinecke JW . Thematic review series: the immune system and atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 2005; 46: 389–403.

    CAS  PubMed  Google Scholar 

  58. van der Westhuyzen DR, Cai L, de Beer MC, de Beer FC . Serum amyloid A promotes cholesterol efflux mediated by scavenger receptor B-I. J Biol Chem 2005; 280: 35890–35895.

    CAS  PubMed  Google Scholar 

  59. Manley PN, Ancsin JB, Kisilevsky R . Rapid recycling of cholesterol: the joint biologic role of C-reactive protein and serum amyloid A. Med Hypotheses 2006; 66: 784–792.

    CAS  PubMed  Google Scholar 

  60. Poitou C, Viguerie N, Cancello R, De Matteis R, Cinti S, Stich V et al. Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition. Diabetologia 2005; 48: 519–528.

    CAS  PubMed  Google Scholar 

  61. Cohen AS . Amyloidosis associated with rheumatoid arthritis. Med Clin N A 1968; 52: 643–653.

    CAS  Google Scholar 

  62. Buxbaum JN . The Amyloidoses. Rheumatology 2003: 2015–2026.

  63. Gillmore JD, Lovat LB, Persey MR, Pepys MB, Hawkins PN . Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet 2001; 358: 24–29.

    CAS  PubMed  Google Scholar 

  64. Sipe J . Revised nomenclature for serum amyloid A (SAA). Nomenclature Committee of the International Society of Amyloidosis. Part 2 [editorial]. Amyloid 1999; 6: 67–70.

    CAS  PubMed  Google Scholar 

  65. Kluve-Beckerman B, Naylor SL, Marshall A, Gardner JC, Shows TB, Benson MD . Localization of human SAA gene(s) to chromosome 11 and detection of DNA polymorphisms. Biochem Biophys Res Commun 1986; 137: 1196–1204.

    CAS  PubMed  Google Scholar 

  66. Qiu H, Shimada K, Cheng Z . Chromosomal localization of the mouse prealbumin gene (Ttr) by in situ hybridization. Cytogenet Cell Genet 1992; 61: 186–188.

    CAS  PubMed  Google Scholar 

  67. Moriguchi M, Terai C, Koseki Y, Uesato M, Nakajima A, Inada S et al. Influence of genotypes at SAA1 and SAA2 loci on the development and the length of latent period of secondary AA-amyloidosis in patients with rheumatoid arthritis. Hum Genet 1999; 105: 360–366.

    CAS  PubMed  Google Scholar 

  68. Booth DR, Booth SE, Gillmore JD, Hawkins PN, Pepys MB . SAA1 alleles as risk factors in reactive systemic AA amyloidosis. Amyloid 1998; 5: 262–265.

    CAS  PubMed  Google Scholar 

  69. Yamada T, Okuda Y, Takasugi K, Wang L, Marks D, Benson MD et al. An allele of serum amyloid A1 associated with amyloidosis in both Japanese and Caucasians. Amyloid 2003; 10: 7–11.

    CAS  PubMed  Google Scholar 

  70. Okuda Y, Yamada T, Takasugi K, Takeda M, Nanba S, Onishi M et al. Serum amyloid A (SAA) 1, SAA 2 and apolipoprotein E isotype frequencies in rheumatoid arthritis patients with AA amyloidosis]. Ryumachi 1999; 39: 3–10.

    CAS  PubMed  Google Scholar 

  71. Nakamura T, Higashi S, Tomoda K, Tsukano M, Baba S, Shono M . Significance of SAA1.3 allele genotype in Japanese patients with amyloidosis secondary to rheumatoid arthritis. Rheumatology (Oxford) 2005; 84: 1322–1328.

    Google Scholar 

  72. Ishii W, Matsuda M, Nakamura A, Nakamura N, Suzuki A, Ikeda S . Abdominal fat aspiration biopsy and genotyping of serum amyloid A contribute to early diagnosis of reactive AA amyloidosis secondary to rheumatoid arthritis. Intern Med 2003; 42: 800–805.

    CAS  PubMed  Google Scholar 

  73. Moriguchi M, Kaneko H, Terai C, Koseki Y, Kajiyama H, Inada S et al. Relative transcriptional activities of SAA1 promoters polymorphic at position −13(T/C): potential association between increased transcription and amyloidosis. Amyloid 2005; 12: 26–32.

    CAS  PubMed  Google Scholar 

  74. Yamada T, Okuda Y, Itoh Y . The frequency of serum amyloid A2 alleles in the Japanese population. Amyloid 1998; 5: 208–211.

    CAS  PubMed  Google Scholar 

  75. Faulkes DJ, Woo P . Do alleles at the serum amyloid A locus influence susceptibility to reactive amyloidosis in systemic onset juvenile chronic arthritis? Amyloid:Int J Exp Clin Invest 1979; 4: 75–79.

    Google Scholar 

  76. Stojanov S, Kastner DL . Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol 2005; 17: 586–599.

    CAS  PubMed  Google Scholar 

  77. Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC, Booth DR et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 2002; 46: 2445–2452.

    CAS  PubMed  Google Scholar 

  78. Hull KM, Drewe E, Aksentijevich I, Singh HK, Wong K, McDermott EM et al. The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine (Baltimore) 2002; 81: 349–368.

    CAS  Google Scholar 

  79. Feldmann J, Prieur AM, Quartier P, Berquin P, Cortis E, Teillac-Hamel D et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002; 71: 198–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dode C, Le Du N, Cuisset L, Letourneur F, Berthelot JM, Vaudour G et al. New mutations of CIAS1 that are responsible for muckle–wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet 2002; 70: 1498–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dode C, Andre M, Bienvenu T, Hausfater P, Pecheux C, Bienvenu J et al. The enlarging clinical, genetic, and population spectrum of tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 2002; 46: 2181–2188.

    CAS  PubMed  Google Scholar 

  82. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 2003; 11: 591–604.

    CAS  PubMed  Google Scholar 

  83. McDermott MF . Genetic clues to understanding periodic fevers, and possible therapies. Trends Mol Med 2002; 8: 550–554.

    CAS  PubMed  Google Scholar 

  84. Jacobson DR, Buxbaum JN . Genetic aspects of amyloidosis. Adv Hum Genet 1991; 20: 69–123.

    CAS  PubMed  Google Scholar 

  85. Gershoni-Baruch R, Brik R, Zacks N, Shinawi M, Lidar M, Livneh A . The contribution of genotypes at the MEFV and SAA1 loci to amyloidosis and disease severity in patients with familial Mediterranean fever. Arthritis Rheum 2003; 48: 1149–1155.

    PubMed  Google Scholar 

  86. Akar N, Hasipek M, Akar E, Ekim M, Yalcinkaya F, Cakar N . Serum amyloid A1 and tumor necrosis factor-alpha alleles in Turkish familial Mediterranean fever patients with and without amyloidosis. Amyloid 2003; 10: 12–16.

    CAS  PubMed  Google Scholar 

  87. Gershoni-Baruch R, Brik R, Lidar M, Shinawi M, Livneh A . Male sex coupled with articular manifestations cause a 4-fold increase in susceptibility to amyloidosis in patients with familial Mediterranean fever homozygous for the M694V-MEFV mutation. J Rheumatol 2003; 30: 308–312.

    PubMed  Google Scholar 

  88. Cazeneuve C, Ajrapetyan H, Papin S, Roudot-Thoraval F, Genevieve D, Mndjoyan E et al. Identification of MEFV-independent modifying genetic factors for familial Mediterranean fever. Am J Hum Genet 2000; 67: 1136–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. van der Hilst JC, Drenth JP, Bodar EJ, Bijzet J, van der Meer JW, Simon A . Serum amyloid A serum concentrations and genotype do not explain low incidence of amyloidosis in Hyper-IgD syndrome. Amyloid 2005; 12: 115–119.

    CAS  PubMed  Google Scholar 

  90. Richter GW . The resorption of amyloid under experimental conditions. Am J Pathol 1954; 30: 239–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Durie BG, Persky B, Soehnlen BJ, Grogan TM, Salmon SE . Amyloid production in human myeloma stem-cell culture, with morphologic evidence of amyloid secretion by associated macrophages. N Engl J Med 1982; 307: 1689–1692.

    CAS  PubMed  Google Scholar 

  92. Keeling J, Teng J, Herrera GA . AL-amyloidosis and light-chain deposition disease light chains induce divergent phenotypic transformations of human mesangial cells. Lab Invest 2006; 45: 43–49.

    Google Scholar 

  93. Hrncic R, Wall J, Wolfenbarger DA, Murphy CL, Schell M, Weiss DT et al. Antibody-mediated resolution of light chain-associated amyloid deposits. Am J Pathol 2000; 157: 1239–1246.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Solomon A, Weiss DT, Wall JS . Immunotherapy in systemic primary (AL) amyloidosis using amyloid-reactive monoclonal antibodies. Cancer Biother Radiopharm 2003; 18: 853–860.

    CAS  PubMed  Google Scholar 

  95. Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM . The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 1998; 57: 63–72.

    CAS  PubMed  Google Scholar 

  96. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 1996; 382: 685–692.

    CAS  PubMed  Google Scholar 

  97. El Khoury JE, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD . Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 1996; 382: 716–719.

    CAS  PubMed  Google Scholar 

  98. Kunjathoor VV, Tseng AA, Medeiros LA, Khan T, Moore KJ . Beta-amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins. J Neuroinflammation 2004; 1: 23.

    PubMed  PubMed Central  Google Scholar 

  99. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999; 400: 173–177.

    CAS  PubMed  Google Scholar 

  100. Broytman O, Malter JS . Anti-Abeta: the good, the bad, and the unforeseen. J Neurosci Res 2004; 75: 301–306.

    CAS  PubMed  Google Scholar 

  101. Monsonego A, Imitola J, Petrovic S, Zota V, Nemirovsky A, Baron R et al. Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 2006; 103: 5048–5053.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO . Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 2003; 9: 448–452.

    CAS  PubMed  Google Scholar 

  103. Lee M, Bard F, Johnson-Wood K, Lee C, Hu K, Griffith SG et al. Abeta42 immunization in Alzheimer's disease generates Abeta N-terminal antibodies. Ann Neurol 2005; 58: 430–435.

    CAS  PubMed  Google Scholar 

  104. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 6: 916–919.

    CAS  PubMed  Google Scholar 

  105. Terazaki H, Ando Y, Fernandes R, Yamamura KI, Maeda S, Saraiva MJ . Immunization in familial amyloidotic polyneuropathy: counteracting deposition by immunization with a Y78F TTR mutant. Lab Invest 2006; 86: 23–31.

    CAS  PubMed  Google Scholar 

  106. Sekijima Y, Wiseman RL, Matteson J, Hammarstrom P, Miller SR, Sawkar AR et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 2005; 121: 73–85.

    CAS  PubMed  Google Scholar 

  107. Sousa A, Coelho T, Lobato L, Sequeiros J . Genetic epidemiology of familial amyloidotic polyneuropathy (FAP)-type I (FAP-MET30). In: Kyle R (ed). Amyloid and Amyloidosis. Parthenon Publishers: New York and London, 1995, pp 209–211.

    Google Scholar 

  108. Sousa A, Andersson R, Drugge U, Holmgren G, Sandgren O . Familial amyloidotic polyneuropathy in Sweden: geographical distribution, age of onset, and prevalence. Hum Hered 1993; 43: 288–294.

    CAS  PubMed  Google Scholar 

  109. Soares ML, Coehlo T, Sousa A, Batalov S, Conceicao I, Sales-Luis ML et al. Susceptibility and modifier genes in Portuguese transthyretin V30M amyloid polyneuropathy: complexity in a single-gene disease. Hum Mol Genet 2005; 14: 543–553.

    CAS  PubMed  Google Scholar 

  110. Casadei VM, Ferri C, Veglia F, Gavazzi A, Salani G, Cattaneo M et al. APOE-491 promoter polymorphism is a risk factor for late-onset Alzheimer's disease. Neurology 1999; 53: 1888–1889.

    CAS  PubMed  Google Scholar 

  111. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921–923.

    CAS  PubMed  Google Scholar 

  112. Hoshii Y, Kawano H, Cui D, Takeda T, Gondo T, Takahashi M et al. Amyloid A protein amyloidosis induced in apolipoprotein-E-deficient mice. Am J Pathol 1997; 151: 911–917.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Buxbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buxbaum, J. The genetics of the amyloidoses: interactions with immunity and inflammation. Genes Immun 7, 439–449 (2006). https://doi.org/10.1038/sj.gene.6364323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364323

This article is cited by

Search

Quick links