Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anti-cytokine autoantibodies: mechanistic insights and disease associations

Abstract

Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms responsible for breaking immune tolerance in the generation of anti-cytokine autoantibodies.
Fig. 2: Therapeutic approaches targeting anti-cytokine autoantibodies.

Similar content being viewed by others

References

  1. Bousfiha, A. et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J. Clin. Immunol. 40, 66–81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marmont, A., Peschle, C., Sanguineti, M. & Condorelli, M. Pure red cell aplasia (PRCA): response of three patients of cyclophosphamide and/or antilymphocyte globulin (ALG) and demonstration of two types of serum IgG inhibitors to erythropoiesis. Blood 45, 247–261 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Notarangelo, L. D., Bacchetta, R., Casanova, J. L. & Su, H. C. Human inborn errors of immunity: an expanding universe. Sci. Immunol. 5, eabb1662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agrawal, A. & Schatz, D. G. RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination. Cell 89, 43–53 (1997). A seminal paper showing that V(D)J recombination is mediated by RAG1 and RAG2.

    Article  CAS  PubMed  Google Scholar 

  5. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Nguyen, K., Alsaati, N., Le Coz, C. & Romberg, N. Genetic obstacles to developing and tolerizing human B cells. WIREs Mech. Dis. 14, e1554 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, C. et al. The site and stage of anti-DNA B-cell deletion. Nature 373, 252–255 (1995). This paper shows in an antibody gene knock-in mouse model that receptor editing is nearly complete and is focused on the light-chain rather than the heavy-chain locus.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003). A landmark paper showing the high frequency of self-reactive and polyreactive BCRs in immature B cells escaping central tolerance.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Walter, J. E. et al. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. J. Clin. Invest. 125, 4135–4148 (2015). An important paper showing that ACAAs, particularly antibodies to type 1 interferons, are a feature of many human primary immunodeficiencies with autoimmunity and defective thymus function.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen, J. W. et al. Positive and negative selection shape the human naive B cell repertoire. J. Clin. Invest. 132, e150985 (2022). Recent evidence in humans directly implicating regulatory T cells in the maintenance of peripheral B cell tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sauer, A. V. et al. Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy. J. Clin. Invest. 122, 2141–2152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kinnunen, T. et al. Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells. Blood 121, 1595–1603 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hervé, M. et al. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J. Exp. Med. 204, 1583–1593 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sng, J. et al. AIRE expression controls the peripheral selection of autoreactive B cells. Sci. Immunol. 4, eaav6778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyers, G. et al. Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl Acad. Sci. USA 108, 11554–11559 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leonardo, S. M., Josephson, J. A., Hartog, N. L. & Gauld, S. B. Altered B cell development and anergy in the absence of Foxp3. J. Immunol. 185, 2147–2156 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Meager, A. et al. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 3, e289 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meloni, A. et al. Autoantibodies against type I interferons as an additional diagnostic criterion for autoimmune polyendocrine syndrome type I. J. Clin. Endocrinol. Metab. 93, 4389–4397 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Rosenberg, J. M. et al. Neutralizing anti-cytokine autoantibodies against interferon-α in immunodysregulation polyendocrinopathy enteropathy X-linked. Front. Immunol. 9, 544 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ferré, E. M. N., Schmitt, M. M. & Lionakis, M. S. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Front. Pediatr. 9, 723532 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sharifinejad, N. et al. Clinical, immunological, and genetic features in 938 patients with autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED): a systematic review. Expert Rev. Clin. Immunol. 17, 807–817 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Besnard, M., Padonou, F., Provin, N., Giraud, M. & Guillonneau, C. AIRE deficiency, from preclinical models to human APECED disease. Dis. Model Mech. 14, dmm046359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010). This paper shows that neutralizing autoantibodies targeting IL-17 and IL-22 in patients with APS1 represent phenocopies of patients with mutations in IL17F, IL17RA or IL17RC who present with mucocutaneous candidiasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kärner, J. et al. IL-6-specific autoantibodies among APECED and thymoma patients. Immun. Inflamm. Dis. 4, 235–243 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meyer, S. et al. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell 166, 582–595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vazquez, S. E. et al. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-Seq. eLife 9, e55053 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petersen, A. et al. Cytokine-specific autoantibodies shape the gut microbiome in autoimmune polyendocrine syndrome type 1. J. Allergy Clin. Immunol. 148, 876–888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kärner, J. et al. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin. Exp. Immunol. 171, 263–272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sarkadi, A. K. et al. Autoantibodies to IL-17A may be correlated with the severity of mucocutaneous candidiasis in APECED patients. J. Clin. Immunol. 34, 181–193 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Bichele, R. et al. IL-22 neutralizing autoantibodies impair fungal clearance in murine oropharyngeal candidiasis model. Eur. J. Immunol. 48, 464–470 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oikonomou, V., Break, T. J., Gaffen, S. L., Moutsopoulos, N. M. & Lionakis, M. S. Infections in the monogenic autoimmune syndrome APECED. Curr. Opin. Immunol. 72, 286–297 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bastard, P. et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218, e20210554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meisel, C. et al. Mild COVID-19 despite autoantibodies against type I IFNs in autoimmune polyendocrine syndrome type 1. J. Clin. Invest. 131, e150867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Puel, A., Bastard, P., Bustamante, J. & Casanova, J. L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 219, e20211387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savvateeva, E. N. et al. Multiplex autoantibody detection in patients with autoimmune polyglandular syndromes. Int. J. Mol. Sci. 22, 5502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Devoss, J. J. et al. Effector mechanisms of the autoimmune syndrome in the murine model of autoimmune polyglandular syndrome type 1. J. Immunol. 181, 4072–4079 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gavanescu, I., Benoist, C. & Mathis, D. B cells are required for Aire-deficient mice to develop multi-organ autoinflammation: a therapeutic approach for APECED patients. Proc. Natl Acad. Sci. USA 105, 13009–13014 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamano, T. et al. Thymic B cells are licensed to present self antigens for central T cell tolerance induction. Immunity 42, 1048–1061 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Wolff, A. S. et al. Anti-cytokine autoantibodies preceding onset of autoimmune polyendocrine syndrome type I features in early childhood. J. Clin. Immunol. 33, 1341–1348 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Ramakrishnan, K. A. et al. Anticytokine autoantibodies in a patient with a heterozygous NFKB2 mutation. J. Allergy Clin. Immunol. 141, 1479–1482.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Parsons, K. et al. Severe facial herpes vegetans and viremia in NFKB2-deficient common variable immunodeficiency. Front. Pediatr. 7, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gatenby, P., Basten, A. & Adams, E. Thymoma and late onset mucocutaneous candidiasis associated with a plasma inhibitor of cell-mediated immune function. J. Clin. Lab. Immunol. 3, 209–216 (1980).

    CAS  PubMed  Google Scholar 

  46. Willcox, N. et al. Autoimmunizing mechanisms in thymoma and thymus. Ann. N. Y. Acad. Sci. 1132, 163–173 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Weksler, B. & Lu, B. Alterations of the immune system in thymic malignancies. J. Thorac. Oncol. 9, S137–S142 (2014).

    Article  PubMed  Google Scholar 

  48. Meager, A., Vincent, A., Newsom-Davis, J. & Willcox, N. Spontaneous neutralising antibodies to interferon-alpha and interleukin-12 in thymoma-associated autoimmune disease. Lancet 350, 1596–1597 (1997). This study reported autoantibodies to IL-12 in patients with thymoma and myasthenia gravis.

    Article  CAS  PubMed  Google Scholar 

  49. Meager, A. et al. Anti-cytokine autoantibodies in autoimmunity: preponderance of neutralizing autoantibodies against interferon-alpha, interferon-omega and interleukin-12 in patients with thymoma and/or myasthenia gravis. Clin. Exp. Immunol. 132, 128–136 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burbelo, P. D. et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood 116, 4848–4858 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinez, B. & Browne, S. K. Good syndrome, bad problem. Front. Oncol. 4, 307 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bastard, P. et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 218, e20202486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Digala, L. P., Prasanna, S., Rao, P., Qureshi, A. I. & Govindarajan, R. Impact of COVID-19 infection among myasthenia gravis patients — a Cerner Real-World Data. BMC Neurol. 22, 38 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, Y. et al. COVID-19 outcomes in myasthenia gravis patients: analysis from electronic health records in the United States. Front. Neurol. 13, 802559 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Garassino, M. C. et al. COVID-19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry-based, cohort study. Lancet Oncol. 21, 914–922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng, A. & Holland, S. M. Anticytokine autoantibodies: autoimmunity trespassing on antimicrobial immunity. J. Allergy Clin. Immunol. 149, 24–28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cheng, A. et al. Anti-interleukin-23 autoantibodies in adults with mycobacteria, gram-negative bacterial and fungal infections. N. Engl. J. Med. (in the press).

  58. Shiono, H. et al. Spontaneous production of anti-IFN-alpha and anti-IL-12 autoantibodies by thymoma cells from myasthenia gravis patients suggests autoimmunization in the tumor. Int. Immunol. 15, 903–913 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Shiono, H. et al. Scenarios for autoimmunization of T and B cells in myasthenia gravis. Ann. N. Y. Acad. Sci. 998, 237–256 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Li, H. et al. IL-23 promotes TCR-mediated negative selection of thymocytes through the upregulation of IL-23 receptor and RORγt. Nat. Commun. 5, 4259 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Panem, S., Check, I. J., Henriksen, D. & Vilcek, J. Antibodies to alpha-interferon in a patient with systemic lupus erythematosus. J. Immunol. 129, 1–3 (1982).

    Article  CAS  PubMed  Google Scholar 

  62. Le Coz, C. et al. CD40LG duplication-associated autoimmune disease is silenced by nonrandom X-chromosome inactivation. J. Allergy Clin. Immunol. 141, 2308–2311.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Woodruff, M. C. et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506–1516 (2020). A very interesting paper showing the origins of broad de novo autoreactivity in patients with acute COVID-19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Woodruff, M. C. et al. Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature 611, 139–147 (2022). Using single-cell repertoire sequencing coupled with monoclonal antibody production, this follow-up paper to reference 63 shows the expansion and contraction of naive B cell-derived, low-mutation antibody-secreting cells to be responsible for commonly detected antibodies to self-antigens, documenting the origins, breadth and uneven resolution of autoreactivity in patients with critical COVID-19.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaneko, N. et al. Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183, 143–157.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mayer, C. T. et al. An apoptosis-dependent checkpoint for autoimmunity in memory B and plasma cells. Proc. Natl Acad. Sci. USA 117, 24957–24963 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Potter, K. N. et al. Disturbances in peripheral blood B cell subpopulations in autoimmune patients. Lupus 11, 872–877 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Reed, J. H., Jackson, J., Christ, D. & Goodnow, C. C. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med. 213, 1255–1265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pugh-Bernard, A. E. et al. Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J. Clin. Invest. 108, 1061–1070 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schickel, J. N. et al. Self-reactive VH4-34-expressing IgG B cells recognize commensal bacteria. J. Exp. Med. 214, 1991–2003 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Romberg, N. et al. Patients with common variable immunodeficiency with autoimmune cytopenias exhibit hyperplastic yet inefficient germinal center responses. J. Allergy Clin. Immunol. 143, 258–265 (2019).

    Article  PubMed  Google Scholar 

  72. Tyumentseva, M. A., Morozova, V. V., Lebedev, L. R., Babkin, I. V. & Tikunova, N. V. Presence of aberrant VH6 domains in anti-interferon-γ autoantibodies in multiple sclerosis. Hum. Antibodies 22, 31–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Shaw, E. R. et al. Temporal dynamics of anti-type 1 interferon autoantibodies in COVID-19 patients. Clin. Infect. Dis. 75, e1192–e1194 (2021). This paper reports detailed dynamic changes in autoantibodies to type I interferons during acute and convalescent phases of COVID-19, documenting that even in those with highly neutralizing activity at symptom onset, neutralizing capacity can drop to below undetectable levels during recovery. The paper also highlights that in some patients neutralizing titres continue to increase beyond the acute phase, even when the patient has recovered clinically.

    Article  PubMed Central  Google Scholar 

  74. Jones, E. Y., Fugger, L., Strominger, J. L. & Siebold, C. MHC class II proteins and disease: a structural perspective. Nat. Rev. Immunol. 6, 271–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ishigaki, K. et al. HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. Nat. Genet. 54, 393–402 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cappellano, G. et al. Anti-cytokine autoantibodies in autoimmune diseases. Am. J. Clin. Exp. Immunol. 1, 136–146 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Tanaka, N. et al. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte-macrophage colony stimulating factor. FEBS Lett. 442, 246–250 (1999). Together with Cappellano et al. (2012), this paper describes neutralizing autoantibodies to GM-CSF in a pulmonary disease.

    Article  CAS  PubMed  Google Scholar 

  78. Kitamura, T. et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 190, 875–880 (1999). This paper describes neutralizing autoantibodies to GM-CSF in pulmonary alveolar proteinosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Uchida, K. et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 113, 2547–2556 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Trapnell, B. C., Carey, B. C., Uchida, K. & Suzuki, T. Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr. Opin. Immunol. 21, 514–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Greenhill, S. R. & Kotton, D. N. Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction. Chest 136, 571–577 (2009).

    Article  PubMed  Google Scholar 

  82. Stanley, E. et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl Acad. Sci. USA 91, 5592–5596 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hadchouel, A. et al. Alveolar proteinosis of genetic origins. Eur. Respir. Rev. 29, 190187 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sakagami, T. et al. Human GM-CSF autoantibodies and reproduction of pulmonary alveolar proteinosis. N. Engl. J. Med. 361, 2679–2681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Trapnell, B. C. et al. Inhaled molgramostim therapy in autoimmune pulmonary alveolar proteinosis. N. Engl. J. Med. 383, 1635–1644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Salvator, H. et al. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir. Res. 23, 280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, Y. et al. Pathological crystallization of human immunoglobulins. Proc. Natl Acad. Sci. USA 109, 13359–13361 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jegerlehner, A. et al. TLR9 signaling in B cells determines class switch recombination to IgG2a. J. Immunol. 178, 2415–2420 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Rosen, L. B. et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J. Immunol. 190, 3959–3966 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Saijo, T. et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. mBio 5, e00912–e00914 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rosen, L. B. et al. Nocardia-induced granulocyte macrophage colony-stimulating factor is neutralized by autoantibodies in disseminated/extrapulmonary nocardiosis. Clin. Infect. Dis. 60, 1017–1025 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Kuo, C. Y. et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J. Clin. Immunol. 37, 143–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Crum-Cianflone, N. F., Lam, P. V., Ross-Walker, S., Rosen, L. B. & Holland, S. M. Autoantibodies to granulocyte-macrophage colony-stimulating factor associated with severe and unusual manifestations of Cryptococcus gattii infections. Open Forum Infect. Dis. 4, ofx211 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kuo, P. H. et al. Neutralizing anti-GM-CSF autoantibodies in patients with CNS and localized cryptococcosis: a longitudinal follow-up and literature review. Clin. Infect. Dis. 75, 278–287 (2021).

    Article  Google Scholar 

  96. Viola, G. M. et al. Disseminated cryptococcosis and anti-granulocyte-macrophage colony-stimulating factor autoantibodies: an underappreciated association. Mycoses 64, 576–582 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Lafont, E., Conan, P. L., Rodriguez-Nava, V. & Lebeaux, D. Invasive nocardiosis: disease presentation, diagnosis and treatment — old questions, new answers? Infect. Drug Resist. 13, 4601–4613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Perrineau, S., Guery, R., Monnier, D., Puel, A. & Lanternier, F. Anti-GM-CSF autoantibodies and Cryptococcus neoformans var. grubii CNS vasculitis. J. Clin. Immunol. 40, 767–769 (2020).

    Article  PubMed  Google Scholar 

  99. Demir, S., Chebib, N., Thivolet-Bejui, F. & Cottin, V. Pulmonary alveolar proteinosis following cryptococcal meningitis: a possible cause? BMJ Case Rep. 2018, bcr2017222940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sibbitt, W. L. et al. Relationship between circulating interferon and anti-interferon antibodies and impaired natural killer cell activity in systemic lupus erythematosus. Arthritis Rheum. 28, 624–629 (1985).

    Article  PubMed  Google Scholar 

  101. Takemura, H. et al. Anti-interleukin-6 autoantibodies in rheumatic diseases. Increased frequency in the sera of patients with systemic sclerosis. Arthritis Rheum. 35, 940–943 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Prümmer, O., Zillikens, D. & Porzsolt, F. High-titer interferon-alpha antibodies in a patient with pemphigus foliaceus. Exp. Dermatol. 5, 213–217 (1996).

    Article  PubMed  Google Scholar 

  103. Elkarim, R. A., Mustafa, M., Kivisäkk, P., Link, H. & Bakhiet, M. Cytokine autoantibodies in multiple sclerosis, aseptic meningitis and stroke. Eur. J. Clin. Invest. 28, 295–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Graudal, N. A. et al. Autoantibodies against interleukin 1alpha in rheumatoid arthritis: association with long term radiographic outcome. Ann. Rheum. Dis. 61, 598–602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bagnato, F. et al. Neutralizing antibodies against endogenous interferon in myasthenia gravis patients. Eur. Cytokine Netw. 15, 24–29 (2004).

    CAS  PubMed  Google Scholar 

  106. Gupta, S. et al. Distinct functions of autoantibodies against interferon in systemic lupus erythematosus: a comprehensive analysis of anticytokine autoantibodies in common rheumatic diseases. Arthritis Rheumatol. 68, 1677–1687 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bottini, N. & Peterson, E. J. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu. Rev. Immunol. 32, 83–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Schellekens, H., Ryff, J. C. & van der Meide, P. H. Assays for antibodies to human interferon-alpha: the need for standardization. J. Interferon Cytokine Res. 17, S5–S8 (1997).

    CAS  PubMed  Google Scholar 

  110. Zohar, Y., Wildbaum, G. & Karin, N. Beneficial autoimmunity participates in the regulation of rheumatoid arthritis. Front. Biosci. 11, 368–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Wildbaum, G., Nahir, M. A. & Karin, N. Beneficial autoimmunity to proinflammatory mediators restrains the consequences of self-destructive immunity. Immunity 19, 679–688 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Bergman, R. et al. Psoriasis patients generate increased serum levels of autoantibodies to tumor necrosis factor-alpha and interferon-alpha. J. Dermatol. Sci. 56, 163–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Morimoto, A. M. et al. Association of endogenous anti-interferon-α autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 2407–2415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sjöwall, C., Ernerudh, J., Bengtsson, A. A., Sturfelt, G. & Skogh, T. Reduced anti-TNFalpha autoantibody levels coincide with flare in systemic lupus erythematosus. J. Autoimmun. 22, 315–323 (2004).

    Article  PubMed  Google Scholar 

  115. Mathian, A. et al. Lower disease activity but higher risk of severe COVID-19 and herpes zoster in patients with systemic lupus erythematosus with pre-existing autoantibodies neutralising IFN-alpha. Ann. Rheum. Dis. 81, 1695–1703 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Price, J. V. et al. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus. J. Clin. Invest. 123, 5135–5145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Howe, H. S. & Leung, B. P. L. Anti-cytokine autoantibodies in systemic lupus erythematosus. Cells 9, 72 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Howe, H. S. et al. Associations of B cell-activating factor (BAFF) and anti-BAFF autoantibodies with disease activity in multi-ethnic Asian systemic lupus erythematosus patients in Singapore. Clin. Exp. Immunol. 189, 298–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Saurat, J. H., Schifferli, J., Steiger, G., Dayer, J. M. & Didierjean, L. Anti-interleukin-1 alpha autoantibodies in humans: characterization, isotype distribution, and receptor-binding inhibition — higher frequency in Schnitzler’s syndrome (urticaria and macroglobulinemia). J. Allergy Clin. Immunol. 88, 244–256 (1991).

    Article  CAS  PubMed  Google Scholar 

  120. Suzuki, H. et al. IL-6–anti-IL-6 autoantibody complexes with IL-6 activity in sera from some patients with systemic sclerosis. J. Immunol. 152, 935–942 (1994).

    Article  CAS  PubMed  Google Scholar 

  121. Hellmich, B., Ciaglo, A., Schatz, H. & Coakley, G. Autoantibodies against granulocyte-macrophage colony stimulating factor and interleukin-3 are rare in patients with Felty’s syndrome. Ann. Rheum. Dis. 63, 862–866 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hellmich, B., Csernok, E., Schatz, H., Gross, W. L. & Schnabel, A. Autoantibodies against granulocyte colony-stimulating factor in Felty’s syndrome and neutropenic systemic lupus erythematosus. Arthritis Rheum. 46, 2384–2391 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Tzioufas, A. G., Kokori, S. I., Petrovas, C. I. & Moutsopoulos, H. M. Autoantibodies to human recombinant erythropoietin in patients with systemic lupus erythematosus: correlation with anemia. Arthritis Rheum. 40, 2212–2216 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Voulgarelis, M. et al. Anaemia in systemic lupus erythematosus: aetiological profile and the role of erythropoietin. Ann. Rheum. Dis. 59, 217–222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schett, G. et al. Decreased serum erythropoietin and its relation to anti-erythropoietin antibodies in anaemia of systemic lupus erythematosus. Rheumatology 40, 424–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Knight, V. Immunodeficiency and autoantibodies to cytokines. J. Appl. Lab. Med. 7, 151–164 (2022).

    Article  PubMed  Google Scholar 

  127. Ku, C. L., Chi, C. Y., von Bernuth, H. & Doffinger, R. Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum. Genet. 139, 783–794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Puel, A. et al. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J. Immunol. 180, 647–654 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Nanki, T. et al. Suppression of elevations in serum C reactive protein levels by anti-IL-6 autoantibodies in two patients with severe bacterial infections. Ann. Rheum. Dis. 72, 1100–1102 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Bloomfield, M. et al. Anti-IL6 autoantibodies in an infant with CRP-less septic shock. Front. Immunol. 10, 2629 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Browne, S. K. et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367, 725–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wipasa, J. et al. Characterization of anti-interferon-γ antibodies in HIV-negative immunodeficient patients infected with unusual intracellular microorganisms. Exp. Biol. Med. 243, 621–626 (2018).

    Article  CAS  Google Scholar 

  133. Höflich, C. et al. Naturally occurring anti-IFN-gamma autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 103, 673–675 (2004). Together with Knight (2022), this paper describes neutralizing autoantibodies to IFNγ in a disseminated mycobacterial disease.

    Article  PubMed  Google Scholar 

  134. Döffinger, R. et al. Autoantibodies to interferon-gamma in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin. Infect. Dis. 38, e10–e14 (2004).

    Article  PubMed  Google Scholar 

  135. Doffinger, R., Patel, S. & Kumararatne, D. S. Human immunodeficiencies that predispose to intracellular bacterial infections. Curr. Opin. Rheumatol. 17, 440–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Patel, S. Y. et al. Anti-IFN-gamma autoantibodies in disseminated nontuberculous mycobacterial infections. J. Immunol. 175, 4769–4776 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Chi, C. Y. et al. Anti-IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 121, 1357–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Chi, C. Y. et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-γ autoantibodies and disseminated nontuberculous mycobacterial infections. Medicine 95, e3927 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hong, G. H. et al. Natural history and evolution of anti-interferon-γ autoantibody-associated immunodeficiency syndrome in Thailand and the United States. Clin. Infect. Dis. 71, 53–62 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Shih, H. P., Ding, J. Y., Yeh, C. F., Chi, C. Y. & Ku, C. L. Anti-interferon-γ autoantibody-associated immunodeficiency. Curr. Opin. Immunol. 72, 206–214 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Chen, Z. M. et al. Clinical findings of Talaromyces marneffei infection among patients with anti-interferon-γ immunodeficiency: a prospective cohort study. BMC Infect. Dis. 21, 587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kiratikanon, S. et al. Adult-onset immunodeficiency due to anti-interferon-gamma autoantibody-associated Sweet syndrome: a distinctive entity. J. Dermatol. 49, 133–141 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Bayat, A. et al. Anti-cytokine autoantibodies in postherpetic neuralgia. J. Transl. Med. 13, 333 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Elkarim, R. A. et al. Recovery from Guillain–Barre syndrome is associated with increased levels of neutralizing autoantibodies to interferon-gamma. Clin. Immunol. Immunopathol. 88, 241–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, Y. C. et al. Clinicopathological manifestations and immune phenotypes in adult-onset immunodeficiency with anti-interferon-γ autoantibodies. J. Clin. Immunol. 42, 672–683 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Kampitak, T., Suwanpimolkul, G., Browne, S. & Suankratay, C. Anti-interferon-γ autoantibody and opportunistic infections: case series and review of the literature. Infection 39, 65–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Lin, C. H. et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nat. Med. 22, 994–1001 (2016). Identification of a major linear epitope in patients with nAIGAs capable of binding Aspergillus protein, which supports molecular mimicry as a mechanism for autoreactivity.

    Article  CAS  PubMed  Google Scholar 

  148. Caruso, A. et al. Anti-interferon-gamma antibodies in sera from HIV infected patients. J. Biol. Regul. Homeost. Agents 3, 8–12 (1989).

    CAS  PubMed  Google Scholar 

  149. Yasamut, U. et al. Neutralizing activity of anti-interferon-γ autoantibodies in adult-onset immunodeficiency is associated with their binding domains. Front. Immunol. 10, 1905 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shih, H. P. et al. Pathogenic autoantibodies to IFN-γ act through the impedance of receptor assembly and Fc-mediated response. J. Exp. Med. 219, e20212126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ku, C. L. et al. Anti-IFN-γ autoantibodies are strongly associated with HLA-DR*15:02/16:02 and HLA-DQ*05:01/05:02 across Southeast Asia. J. Allergy Clin. Immunol. 137, 945–948.e8 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Pithukpakorn, M. et al. HLA-DRB1 and HLA-DQB1 are associated with adult-onset immunodeficiency with acquired anti-interferon-gamma autoantibodies. PLoS ONE 10, e0128481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  153. O’Connell, E. et al. The first US domestic report of disseminated Mycobacterium avium complex and anti-interferon-γ autoantibodies. J. Clin. Immunol. 34, 928–932 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hanitsch, L. G. et al. Late-onset disseminated Mycobacterium avium intracellular complex infection (MAC), cerebral toxoplasmosis and Salmonella sepsis in a German Caucasian patient with unusual anti-interferon-gamma IgG1 autoantibodies. J. Clin. Immunol. 35, 361–365 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. van de Vosse, E., van Wengen, A., van der Meide, W. F., Visser, L. G. & van Dissel, J. T. A 38-year-old woman with necrotising cervical lymphadenitis due to Histoplasma capsulatum. Infection 45, 917–920 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hill, J. A. et al. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 171, 538–541 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Buck, D. & Hemmer, B. Treatment of multiple sclerosis: current concepts and future perspectives. J. Neurol. 258, 1747–1762 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Wysocki, T., Olesinska, M. & Paradowska-Gorycka, A. Current understanding of an emerging role of HLA-DRB1 gene in rheumatoid arthritis — from research to clinical practice. Cells 9, 1127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sim, B. T. et al. Recurrent Burkholderia gladioli suppurative lymphadenitis associated with neutralizing anti-IL-12p70 autoantibodies. J. Clin. Immunol. 33, 1057–1061 (2013).

    Article  PubMed  Google Scholar 

  160. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Martínez-Barricarte, R. et al. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci. Immunol. 3, eaau6759 (2018).

    Article  PubMed  Google Scholar 

  162. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Knight, V., Merkel, P. A. & O’Sullivan, M. D. Anticytokine autoantibodies: association with infection and immune dysregulation. Antibodies 5, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. & Gurney, A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Kreymborg, K., Böhlmann, U. & Becher, B. IL-23: changing the verdict on IL-12 function in inflammation and autoimmunity. Expert Opin. Ther. Targets 9, 1123–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  166. Eisenblätter, M. et al. Nocardia farcinica activates human dendritic cells and induces secretion of interleukin-23 (IL-23) rather than IL-12p70. Infect. Immun. 80, 4195–4202 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Verreck, F. A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl Acad. Sci. USA 101, 4560–4565 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ross, C., Hansen, M. B., Schyberg, T. & Berg, K. Autoantibodies to crude human leucocyte interferon (IFN), native human IFN, recombinant human IFN-alpha 2b and human IFN-gamma in healthy blood donors. Clin. Exp. Immunol. 82, 57–62 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hansen, M. B., Svenson, M. & Bendtzen, K. Human anti-interleukin 1 alpha antibodies. Immunol. Lett. 30, 133–139 (1991).

    Article  CAS  PubMed  Google Scholar 

  170. van der Meide, P. H. & Schellekens, H. Anti-cytokine autoantibodies: epiphenomenon or critical modulators of cytokine action. Biotherapy 10, 39–48 (1997).

    Article  PubMed  Google Scholar 

  171. Watanabe, M. et al. Anti-cytokine autoantibodies are ubiquitous in healthy individuals. FEBS Lett. 581, 2017–2021 (2007).

    Article  CAS  PubMed  Google Scholar 

  172. Abe, Y., Horiuchi, A., Miyake, M. & Kimura, S. Anti-cytokine nature of natural human immunoglobulin: one possible mechanism of the clinical effect of intravenous immunoglobulin therapy. Immunol. Rev. 139, 5–19 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Le Pottier, L. et al. Intravenous immunoglobulin and cytokines: focus on tumor necrosis factor family members BAFF and APRIL. Ann. N. Y. Acad. Sci. 1110, 426–432 (2007).

    Article  ADS  PubMed  Google Scholar 

  174. Sacco, K. et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 28, 1050–1062 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Galle, P., Svenson, M., Bendtzen, K. & Hansen, M. B. High levels of neutralizing IL-6 autoantibodies in 0.1% of apparently healthy blood donors. Eur. J. Immunol. 34, 3267–3275 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. de Lemos Rieper, C., Galle, P., Pedersen, B. K. & Hansen, M. B. A state of acquired IL-10 deficiency in 0.4% of Danish blood donors. Cytokine 51, 286–293 (2010).

    Article  PubMed  Google Scholar 

  177. Rönnblom, L. E., Janson, E. T., Perers, A., Oberg, K. E. & Alm, G. V. Characterization of anti-interferon-alpha antibodies appearing during recombinant interferon-alpha 2a treatment. Clin. Exp. Immunol. 89, 330–335 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Rossert, J., Casadevall, N. & Eckardt, K. U. Anti-erythropoietin antibodies and pure red cell aplasia. J. Am. Soc. Nephrol. 15, 398–406 (2004).

    Article  PubMed  Google Scholar 

  179. Burbelo, P. D. et al. Rapid induction of autoantibodies during ARDS and septic shock. J. Transl. Med. 8, 97 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Chang, S. E. et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 12, 5417 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ikeda, Y. et al. Naturally occurring anti-interferon-alpha 2a antibodies in patients with acute viral hepatitis. Clin. Exp. Immunol. 85, 80–84 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Feng, A. et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight 8, e163150 (2023).

  183. Caruso, A. et al. Natural antibodies to IFN-gamma in man and their increase during viral infection. J. Immunol. 144, 685–690 (1990).

    Article  CAS  PubMed  Google Scholar 

  184. Capini, C. J. et al. Autoantibodies to TNFalpha in HIV-1 infection: prospects for anti-cytokine vaccine therapy. Biomed. Pharmacother. 55, 23–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Soulas, P. et al. Autoantigen, innate immunity, and T cells cooperate to break B cell tolerance during bacterial infection. J. Clin. Invest. 115, 2257–2267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Madariaga, L. et al. Detection of anti-interferon-gamma autoantibodies in subjects infected by Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 2, 62–68 (1998).

    CAS  PubMed  Google Scholar 

  187. Kireev, F. D., Lopatnikova, J. A., Laushkina, Z. A. & Sennikov, S. V. Autoantibodies to tumor necrosis factor in patients with active pulmonary tuberculosis. Front. Biosci. 27, 133 (2022).

    Article  CAS  Google Scholar 

  188. Hansen, M. B. et al. Sex- and age-dependency of IgG auto-antibodies against IL-1 alpha in healthy humans. Eur. J. Clin. Invest. 24, 212–218 (1994).

    Article  CAS  PubMed  Google Scholar 

  189. von Stemann, J. H. et al. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: results from the Danish Blood Donor Study. PLoS ONE 12, e0179981 (2017).

    Article  Google Scholar 

  190. von Stemann, J. H. et al. Cytokine autoantibodies are associated with infection risk and self-perceived health: results from the Danish Blood Donor Study. J. Clin. Immunol. 40, 367–377 (2020).

    Article  Google Scholar 

  191. Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Merkel, P. A., Lebo, T. & Knight, V. Functional analysis of anti-cytokine autoantibodies using flow cytometry. Front. Immunol. 10, 1517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tazawa, R. et al. Inhaled GM-CSF for pulmonary alveolar proteinosis. N. Engl. J. Med. 381, 923–932 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Green, D., Rademaker, A. W. & Briët, E. A prospective, randomized trial of prednisone and cyclophosphamide in the treatment of patients with factor VIII autoantibodies. Thromb. Haemost. 70, 753–757 (1993).

    Article  CAS  PubMed  Google Scholar 

  195. Nilsson, I. M., Berntorp, E. & Zettervall, O. Induction of immune tolerance in patients with hemophilia and antibodies to factor VIII by combined treatment with intravenous IgG, cyclophosphamide, and factor VIII. N. Engl. J. Med. 318, 947–950 (1988).

    Article  CAS  PubMed  Google Scholar 

  196. Ferre, E. M. et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight 1, e88782 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Zhang, W., Liu, J. L., Meager, A., Newsom-Davis, J. & Willcox, N. Autoantibodies to IL-12 in myasthenia gravis patients with thymoma; effects on the IFN-gamma responses of healthy CD4+ T cells. J. Neuroimmunol. 139, 102–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Yoshikawa, H. et al. Elevation of IL-12 p40 and its antibody in myasthenia gravis with thymoma. J. Neuroimmunol. 175, 169–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  199. Bodansky, A. et al. NFKB2 haploinsufficiency identified via screening for IFN-alpha2 autoantibodies in children and adolescents hospitalized with SARS-CoV-2-related complications. J. Allergy Clin. Immunol. 151, 926–930.e2 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Bastard, P. et al. Interferon-beta therapy in a patient with incontinentia pigmenti and autoantibodies against type I IFNs infected with SARS-CoV-2. J. Clin. Immunol. 41, 931–933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ku, C. L. et al. Anti-IFN-gamma autoantibodies are strongly associated with HLA-DR*15:02/16:02 and HLA-DQ*05:01/05:02 across Southeast Asia. J. Allergy Clin. Immunol. 137, 945–948.e8 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020). This paper describes the association of autoantibodies to type I interferons with COVID-19 severity as a phenocopy of patients with genetic IFNAR deficiencies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Vallbracht, A., Treuner, J., Flehmig, B., Joester, K. E. & Niethammer, D. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature 289, 496–497 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  204. Milella, M. et al. Neutralizing antibodies to recombinant alpha-interferon and response to therapy in chronic hepatitis C virus infection. Liver 13, 146–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  205. Aruna & Li, L. Anti-interferon alpha antibodies in patients with high-risk BCR/ABL-negative myeloproliferative neoplasms treated with recombinant human interferon-alpha. Med. Sci. Monit. 24, 2302–2309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bonetti, P. et al. Interferon antibodies in patients with chronic hepatitic C virus infection treated with recombinant interferon alpha-2 alpha. J. Hepatol. 20, 416–420 (1994).

    Article  CAS  PubMed  Google Scholar 

  207. Rudick, R. A. et al. Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 50, 1266–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  208. Antonelli, G., Currenti, M., Turriziani, O. & Dianzani, F. Neutralizing antibodies to interferon-alpha: relative frequency in patients treated with different interferon preparations. J. Infect. Dis. 163, 882–885 (1991).

    Article  CAS  PubMed  Google Scholar 

  209. Burbelo, P. D., Browne, S., Holland, S. M., Iadarola, M. J. & Alevizos, I. Clinical features of Sjögren’s syndrome patients with autoantibodies against interferons. Clin. Transl. Med. 8, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Levin, M. Anti-interferon auto-antibodies in autoimmune polyendocrinopathy syndrome type 1. PLoS Med. 3, e292 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Oftedal, B. E. et al. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity 42, 1185–1196 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Kampmann, B. et al. Novel human in vitro system for evaluating antimycobacterial vaccines. Infect. Immun. 72, 6401–6407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wongkulab, P., Wipasa, J., Chaiwarith, R. & Supparatpinyo, K. Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. PLoS ONE 8, e76371 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  214. Liew, W. K. et al. Juvenile-onset immunodeficiency secondary to anti-interferon-gamma autoantibodies. J. Clin. Immunol. 39, 512–518 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Guo, J., Sun, J., Liu, X., Wang, Z. & Gao, W. Head-to-tail macrocyclization of albumin-binding domain fused interferon alpha improves the stability, activity, tumor penetration, and pharmacology. Biomaterials 250, 120073 (2020).

    Article  CAS  PubMed  Google Scholar 

  216. Caruso, A. & Turano, A. Natural antibodies to interferon-gamma. Biotherapy 10, 29–37 (1997).

    Article  CAS  PubMed  Google Scholar 

  217. Seymour, J. F. & Presneill, J. J. Pulmonary alveolar proteinosis: progress in the first 44 years. Am. J. Respir. Crit. Care Med. 166, 215–235 (2002).

    Article  PubMed  Google Scholar 

  218. Trapnell, B. C., Whitsett, J. A. & Nakata, K. Pulmonary alveolar proteinosis. N. Engl. J. Med. 349, 2527–2539 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Punatar, A. D., Kusne, S., Blair, J. E., Seville, M. T. & Vikram, H. R. Opportunistic infections in patients with pulmonary alveolar proteinosis. J. Infect. 65, 173–179 (2012).

    Article  PubMed  Google Scholar 

  220. Stevenson, B. et al. The significance of anti-granulocyte-macrophage colony-stimulating factor antibodies in cryptococcal infection: case series and review of antibody testing. Intern. Med. J. 49, 1446–1450 (2019).

    Article  PubMed  Google Scholar 

  221. Applen Clancey, S. et al. Cryptococcus deuterogattii VGIIa infection associated with travel to the pacific northwest outbreak region in an anti-granulocyte-macrophage colony-stimulating factor autoantibody-positive patient in the United States. mBio 10, e02733-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Huynh, J. et al. Unusual presentation of severe endobronchial obstruction caused by Cryptococcus gattii in a child. J. Pediatr. Infect. Dis. Soc. 9, 67–70 (2020).

    Article  Google Scholar 

  223. Sakaue, S. et al. Genetic determinants of risk in autoimmune pulmonary alveolar proteinosis. Nat. Commun. 12, 1032 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  224. Homann, C. et al. Anti-interleukin-6 autoantibodies in plasma are associated with an increased frequency of infections and increased mortality of patients with alcoholic cirrhosis. Scand. J. Immunol. 44, 623–629 (1996).

    Article  CAS  PubMed  Google Scholar 

  225. Fudala, R., Krupa, A., Stankowska, D., Allen, T. C. & Kurdowska, A. K. Anti-interleukin-8 autoantibody:interleukin-8 immune complexes in acute lung injury/acute respiratory distress syndrome. Clin. Sci. 114, 403–412 (2008).

    Article  CAS  Google Scholar 

  226. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zheng, Y. et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  228. Eto, S. et al. Neutralizing type I interferon autoantibodies in Japanese patients with severe COVID-19. J. Clin. Immunol. 42, 1360–1370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Troya, J. et al. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J. Clin. Immunol. 41, 914–922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Solanich, X. et al. Pre-existing autoantibodies neutralizing high concentrations of type I interferons in almost 10% of COVID-19 patients admitted to intensive care in Barcelona. J. Clin. Immunol. 41, 1733–1744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Manry, J. et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl Acad. Sci. USA 119, e2200413119 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lopez, J. et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 218, e20211211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Frasca, F. et al. Anti-IFN-alpha/-omega neutralizing antibodies from COVID-19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. Eur. J. Immunol. 52, 1120–1128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Vinh, D. C. et al. Harnessing type I IFN immunity against SARS-CoV-2 with early administration of IFN-beta. J. Clin. Immunol. 41, 1425–1442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Garg, N., Weinstock-Guttman, B., Bhasi, K., Locke, J. & Ramanathan, M. An association between autoreactive antibodies and anti-interferon-beta antibodies in multiple sclerosis. Mult. Scler. 13, 895–899 (2007).

    Article  CAS  PubMed  Google Scholar 

  236. Zare, N., Zarkesh-Esfahani, S. H., Gharagozloo, M. & Shaygannejad, V. Antibodies to interferon beta in patients with multiple sclerosis receiving CinnoVex, Rebif, and Betaferon. J. Korean Med. Sci. 28, 1801–1806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Sorensen, P. S. Neutralizing antibodies against interferon-beta. Ther. Adv. Neurol. Disord. 1, 125–141 (2008).

    Article  PubMed  Google Scholar 

  238. Perini, P., Calabrese, M., Biasi, G. & Gallo, P. The clinical impact of interferon beta antibodies in relapsing-remitting MS. J. Neurol. 251, 305–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  239. Hou, C. et al. Incidence and associated factors of neutralizing anti-interferon antibodies among chronic hepatitis C patients treated with interferon in Taiwan. Scand. J. Gastroenterol. 35, 1288–1293 (2000).

    Article  CAS  PubMed  Google Scholar 

  240. Scagnolari, C. et al. Development and specificities of anti-interferon neutralizing antibodies in patients with chronic hepatitis C treated with pegylated interferon-alpha. Clin. Microbiol. Infect. 18, 1033–1039 (2012).

    Article  CAS  PubMed  Google Scholar 

  241. Prummer, O., Fiehn, C. & Gallati, H. Anti-interferon-gamma antibodies in a patient undergoing interferon-gamma treatment for systemic mastocytosis. J. Interferon Cytokine Res. 16, 519–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  242. Krishna, M. & Nadler, S. G. Immunogenicity to biotherapeutics — the role of anti-drug immune complexes. Front. Immunol. 7, 21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Mufarrege, E. F. et al. De-immunized and functional therapeutic (DeFT) versions of a long lasting recombinant alpha interferon for antiviral therapy. Clin. Immunol. 176, 31–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Hegen, H., Auer, M. & Deisenhammer, F. Pharmacokinetic considerations in the treatment of multiple sclerosis with interferon-beta. Expert. Opin. Drug Metab. Toxicol. 11, 1803–1819 (2015).

    Article  CAS  PubMed  Google Scholar 

  245. Farrell, R. A. et al. Development of resistance to biologic therapies with reference to IFN-beta. Rheumatology 51, 590–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  246. Kivisakk, P., Alm, G. V., Fredrikson, S. & Link, H. Neutralizing and binding anti-interferon-beta (IFN-beta) antibodies. A comparison between IFN-beta-1a and IFN-beta-1b treatment in multiple sclerosis. Eur. J. Neurol. 7, 27–34 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported with funds from the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, and funds from the Taiwan National Science and Technology Council awarded to A.C. (111-2314-B-002-173-MY3).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Steven M. Holland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks P. Bastard, E. Meffre and S. Tangye for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Artemis–DNA-PKCS complex

The Artemis nuclease and DNA-dependent protein kinase catalytic subunit (DNA-PKCS) are key components in non-homologous end joining (NHEJ), the major repair mechanism for double-strand DNA breaks. Artemis activation by DNA-PKCS resolves hairpin DNA ends formed during V(D)J recombination.

Autoimmune polyglandular syndrome type 1

(APS1, also known as APECED). A syndrome caused by mutation in the autoimmune regulator (AIRE) gene that is characterized by immune defects and autoimmunity, most commonly chronic mucocutaneous candidiasis and endocrinopathies such as chronic hypoparathyroidism and adrenal insufficiency.

Chronic granulomatous disease

A primary immunodeficiency wherein defects in NADPH oxidase (that can arise from mutations in five different genes) render phagocytes less effective at killing certain bacteria and fungi. Granulomas develop as a compensatory mechanism to wall off the infection in the skin and sinopulmonary and oral-gastrointestinal tracts.

Chronic mucocutaneous candidiasis

(CMC). Recurrent or persistent infections affecting the nails, skin and oral and genital mucosae caused by Candida spp., mainly Candida albicans. CMC is an infectious phenotype in patients with inherited or acquired T cell deficiency.

Common variable immunodeficiency

Describes various genetic abnormalities that result in a defect in the capability of immune cells to produce normal amounts of all types of antibodies, with the pathogenic consequence of recurrent sinopulmonary infections by viruses and encapsulated bacteria.

DiGeorge syndrome

A polygenic chromosome 22q11.2 deletion syndrome characterized by a triad of clinical features involving congenital cardiac defects, immune deficiencies secondary to aplasia or hypoplasia of the thymus, and hypocalcaemia owing to small or absent parathyroid glands.

Guillain–Barré syndrome

A rare neurological disorder resulting from post-infectious immune-mediated pathology affecting the peripheral nervous system, causing symptoms such as numbness, tingling and weakness that can progress to paralysis.

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome

An extremely rare syndrome caused by mutation in the FOXP3 gene, which controls the production of regulatory T cells, that is characterized by watery diarrhoea, endocrinopathy (most commonly, insulin-dependent diabetes) and eczematous dermatitis in the first year of life.

Inborn errors of immunity

(IEIs). A group of nearly 500 inherited disorders, mostly owing to single-gene mutations, that impair or dysregulate immune function.

Post-herpetic neuralgia

Neuropathic pain that persists after cutaneous reactivation of the varicella zoster virus (commonly known as shingles) owing to damage to a peripheral nerve.

Pulmonary alveolar proteinosis

(PAP). A rare lung disease caused by surfactant accumulation in alveoli and impaired gas exchange.

Receptor editing

Ongoing recombination of the immunoglobulin light chain gene, leading to secondary rearrangements that can alter antigen specificity.

Severe combined immunodeficiency

A group of rare inherited disorders that results in combined deficiency or absence of T cell and B cell functions.

Somatic hypermutation

The stepwise incorporation of point mutations, that is, single-nucleotide substitutions, into the variable (V) region of rearranged immunoglobulin heavy and light chain genes. This occurs at a rate that is 106-fold higher than the spontaneous mutation rate in somatic cells and is the mechanism underpinning much of antibody diversity and affinity maturation.

V(D)J recombination

The reassembly of antigen receptor and antibody genes that occurs only in developing lymphocytes during the early stages of T cell and B cell maturation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, A., Holland, S.M. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 24, 161–177 (2024). https://doi.org/10.1038/s41577-023-00933-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00933-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing