Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A rotating disk of gas and dust around a young counterpart to β Pictoris

Abstract

β Pictoris is the best known example of a main-sequence star encircled by a tenuous disk1. Optical2,3 and infrared4 images of β Pic suggest that the disk is composed of dust grains which have been interpreted1 as the debris generated by the disruption of the asteroid-sized remnants of planet-formation processes5. The star itself is relatively old, with an age in excess of 100 Myr. Here we present high-resolution millimetre-wave images of continuum and molecular-line emission from dust and gas surrounding a much younger star, MWC480: the stellar properties of MWC480 are similar to those of β Pic, but its age is just 6 Myr. The morphology of the circumstellar material and a comparison with the predictions of kinematic modelling indicate the presence of a rotating disk, gravitationally bound to the star. Moreover, the mass of the disk is greater than the minimum required to form a planetary system like our own5. We therefore suggest that the disk around the young star MWC480 could be a progenitor of debris disks of the type associated with older stars such as β Pic, and so holds much promise for the study of both the origin of debris disks and the early stages of the formation of planetary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: False-colour images of millimetre-wave emission from MWC480.
Figure 2: AaAl, Spectral-line maps of CO(2 → 1) emission from MWC480, shown adjacent to simulations of the emission predicted by a kinematic model of a disk in keplerian rotation with parameters as described in the text.

Similar content being viewed by others

References

  1. Backman, D. E. & Paresce, F. in Protostars & Planets III(eds Levy, E. H. & Lunine, J.) 1253–1304 (Univ. Arizona Press, Tucson, (1993)).

    Google Scholar 

  2. Smith, B. A. & Terrile, R. J. Acircumstellar disk around β Pictoris. Science 226, 1421–1424 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Golimowski, D. A., Durrance, S. T. & Clampin, M. Coronagraphic imaging of the β Pictoris circumstellar disk: evidence of changing disk structure within 100 AU. Astrophys. J. 411, L41–L44 (1993).

    Article  Google Scholar 

  4. Lagage, P. O. & Pantin, E. Dust depletion in the inner disk of β Pictoris as a possible indicator of planets. Nature 369, 628–630 (1994).

    Article  ADS  Google Scholar 

  5. Lissauer, J. J. Planet formation. Annu. Rev. Astron. Astrophys. 31, 129–174 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Mannings, V. & Sargent, A. I. Ahigh-resolution study of gas and dust around young intermediate-mass stars: evidence for circumstellar disks in Herbig Ae systems. Astrophys. J.(in the press).

  7. Herbig, G. H. The spectra of Be- and Ae-type stars associated with nebulosity. Astrophys. J. Suppl. Ser. 4, 337–368 (1960).

    Article  ADS  Google Scholar 

  8. Aumann, H. H.et al. Discovery of a shell around α Lyr. Astrophys. J. 278, L23–L27 (1984).

    Article  ADS  Google Scholar 

  9. Sylvester, R. J., Barlow, M. J., Skinner, C. J. & Mannings, V. Optical, infrared and millimetre-wave properties of Vega-like systems. Mon. Not. R. Astron. Soc. 279, 915–939 (1996).

    Article  ADS  Google Scholar 

  10. D'Antona, F. & Mazzitelli, I. New pre-main-sequence tracks for M ≤ 2.5M as tests of opacities and convection model. Astrophys. J. Suppl. Ser. 90, 467–500 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Koerner, D. W. in CO: Twenty-Five Years of Millimeter-Wave Spectroscopy(eds Latter, W. B. et al.) 162–164 (IAU Symp. 170, Kluwer, Dordrecht, (1997)).

    Book  Google Scholar 

  12. Scoville, N. Z.et al. High-resolution mapping of molecular outflows in GGC 2071, W49, and NGC 7538. Astrophys. J. 303, 416–432 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Hildebrand, R. H. Determination of cloud masses and dust characteristics from submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267–282 (1983).

    ADS  Google Scholar 

  14. Beckwith, S. V. W. & Sargent, A. I. Particle emissivity in circumstellar disks. Astrophys. J. 381, 250–258 (1991).

    Article  ADS  Google Scholar 

  15. Mannings, V. & Emerson, J. P. Dust in disks around T Tauri stars: grain growth? Mon. Not. R. Astron. Soc. 267, 361–378 (1994).

    Article  ADS  Google Scholar 

  16. Draine, B. T. & Lee, H. M. Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Miyake, K. & Nakagawa, Y. Effects of particle size distribution on opacity curves of protoplanetary disks around T Tauri stars. Icarus 106, 20–41 (1993).

    Article  ADS  Google Scholar 

  18. Pollack, J. B.et al. Composition and radiative properties of grains in molecular clouds and accretion disks. Astrophys. J. 421, 615–639 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Wright, E. L. Long-wavelength absorption by fractal dust grains. Astrophys. J. 320, 818–824 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Güsten, R. Asurvey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990).

    Article  ADS  Google Scholar 

  21. Koerner, D. W., Sargent, A. I. & Beckwith, S. V. W. Arotating gaseous disk around the T Tauri star GM Aurigae. Icarus 106, 2–10 (1993).

    Article  ADS  Google Scholar 

  22. Dutrey, A., Guilloteau, S. & Simon, M. Images of the GG Tauri rotating ring. Astron. Astrophys. 286, 149–159 ((1994)).

    ADS  CAS  Google Scholar 

  23. Beckwith, S. V. W. & Sargent, A. I. Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139–144 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Sargent, A. I. in Disks & Outflows around Young Stars(eds Beckwith, S. V. W., Staude, J., Quetz, A. & Natta, A.) 1–23 (Springer, Berlin, (1996)).

    Book  Google Scholar 

  25. Dent, W. R. F., Greaves, J. S., Mannings, V., Coulson, I. M. & Walther, D. M. Asearch for molecular gas components in prototypal Vega-excess systems. Mon. Not. R. Astron. Soc. 277, L25–L29 (1995).

    ADS  CAS  Google Scholar 

  26. Beust, H. & Lissauer, J. J. The effects of stellar rotation on the absorption spectra of comets orbiting β Pictoris. Astron. Astrophys. 282, 804–810 (1994).

    ADS  CAS  Google Scholar 

  27. Weidenschilling, S. The origin of comets in the solar nebula: a unified model. Icarus(in the press).

Download references

Acknowledgements

V.M. thanks M. Romans and N. Romans for their support. We thank the staff at the Owens Valley Radio Observatory for their assistance. The Owens Valley millimetre-wave array is supported by the NSF; array studies of young star and disk systems are supported in part by the Norris Planetary Origins project and by NASA's Origins of Solar Systems programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Mannings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannings, V., Koerner, D. & Sargent, A. A rotating disk of gas and dust around a young counterpart to β Pictoris. Nature 388, 555–557 (1997). https://doi.org/10.1038/41505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41505

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing