Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells

Abstract

Recognition and destruction of virus-infected cells by class I major histocompatibility complex (MHC) restricted cytotoxic T lymphocytes (CTL) is a central part of the immune system's attempts to control and eliminate virus infection. It is therefore not surprising that many viruses have evolved strategies to interfere with the processing and presentation of peptide antigen on class I MHC molecules (reviewed in ref. 1). These mechanisms act to prevent or reduce expression of MHC molecules at the cell surface. However, many natural killer (NK) cells are able to recognize and destroy host cells that no longer express class I MHC molecules (the 'missing self hypothesis2). Thus, any virus-infected cell that has lost cell-surface expression of MHC class I to avoid CTL attack should become susceptible to NK-cell-mediated destruction. We describe here the first example, to our knowledge, of a viral strategy to evade immune surveillance by NK cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spriggs, M. K. One step ahead of the game: Viral immunomodulatory molecules. Annu. Rev. Immunol. 14, 101–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Ljunggren, H.-G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK recognition. Immunol. Today 11, 237–242 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Beersma, M. F. C., Bijlmakers, M. J. E. & Ploegh, H. L. Human cytomegalovirus down-regulates HLA class I expression by reducing the stability of class I H chains. J. Immunol. 151, 4455–4464 (1993).

    CAS  PubMed  Google Scholar 

  4. Jones, T. R. et al. Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J. Virol. 69, 4830–4841 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiertz, E. J. H. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Wiertz, E. J. H. J. et al. Cytosolic destruction of a type I membrane protein by transfer via the Sec61p complex from the ER to the proteasome. Nature 384, 432–438 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ahn, K. et al. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc. Natl Acad. Sci. USA 93, 10990–10995 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones, T. R. et al. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl Acad. Sci. USA 93, 11327–11333 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hengel, H., Flohr, T., Hammerling, G. J. & Koszinowski, U. H. Human cytomegalovirus inhibits peptide translocation into the endoplasmic reticulum for MHC class I assembly. J. Gen. Virol. 77, 2287–2296 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Beck, S. & Barrell, B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 331, 269–272 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Browne, H., Smith, G., Beck, S. & Minson, A. A complex between the MHC class I homologue encoded by human cytomegalovirus and β2-microglobulin. Nature 347, 770–772 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Fahnestock, M. L. et al. The MHC class I homologue encoded by human cytomegalovirus binds endogenous peptides. Immunity 3, 583–590 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Wiley, D. MHC gene in cytomegalovirus. Nature 331, 209–210 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Shimizu, Y. & DeMars, R. Production of human cells expressing individual transfered HLA-A, -B, -C genes using an HLA-A, -B, -C null human cell line. J. Immunol. 142, 3320 (1989).

    CAS  PubMed  Google Scholar 

  15. Parham, P., Androlewicz, M. J., Holmes, N. J. & Rothenberg, B. E. Arginine-45 is a major part of the determinant of human β2-microglobulin recognised by mouse monoclonal antibody BBM.1. J. Biol. Chem. 258, 6179–6186 (1983).

    CAS  PubMed  Google Scholar 

  16. Brocker, T., Peter, A., Traunecker, A. & Karjaleinen, K. New simplified molecular design for functional T cell receptor. Eur. J. Immunol. 23, 1435–1439 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Fuhrmann, U., Bause, E. & Ploegh, H. Inhibitors of oligosaccharide processing. Biochim. Biophys. Acta 825, 95–110 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Aramburu, J. et al. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-g/d+ T lymphocytes. I. Inhibition of the IL-2 dependent proliferation by anti-Kp43 monoclonal antibody. J. Immunol. 144, 3238–3247 (1990).

    CAS  PubMed  Google Scholar 

  19. Aramburu, J., Balboa, M. A., Izquierdo, M. & Lopez-botet, M. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-g/d+ T lymphocytes. II. Modulation of natural killer cell cytoxocity by anti-Kp43 monoclonal antibody. J. Immunol. 147, 714–721 (1991).

    CAS  PubMed  Google Scholar 

  20. Perez-Villar, J. J. et al. Functional ambivalence of the Kp43 (CD94) NK cell associated surface antigen. J. Immunol. 154, 5779–5788 (1995).

    CAS  PubMed  Google Scholar 

  21. Phillips, J. H. et al. CD94 and a novel associated protein (94AP) form a NK cell receptor involved in the recognition of HLA-A, HLA-B and HLA-C allotypes. Immunity 5, 163–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Perez-Villar, J. J. et al. Biochemical and serologic evidence for the existence of functionally distinct forms of the CD94 NK cell receptor. J. Immunol. 157, 5367–5374 (1996).

    CAS  PubMed  Google Scholar 

  23. Lazetic, S., Chang, C., Houchins, J. P., Lanier, L. L. & Phillips, J. H. Human natural killer cell receptors involved in MHC class I recognition are disulfide linked heterodimers of CD94 and NKG2 subunits. J. Immunol. 157, 4741–4745 (1996).

    CAS  PubMed  Google Scholar 

  24. McGeoch, D. J., Cook, S., Dolan, A., Jamieson, F. E. & Telford, E. A. Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J. Mol. Biol. 247, 443–458 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Mandelboim, O. et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J. Exp. Med. 184, 913–922 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Shimizu, Y., Geraghy, D. E., Koller, B. H., Orr, H. T. & DeMars, R. Transfer and expression of three cloned human non-HLA-A, B, C class I major histocompatibility genes in mutant lymphoblastoid cells. Proc. Natl Acad. Sci. USA 85, 227–231 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyburn, H., Mandelboim, O., Valés-Gómez, M. et al. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386, 514–517 (1997). https://doi.org/10.1038/386514a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386514a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing