Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Change of coordination from tetrahedral gold–ammonium to square-pyramidal gold–arsonium cations

Abstract

RECENT work1–5 has shown that gold-based ligands in compounds of carbon and nitrogen can induce novel molecular structures with coordination numbers at C and N as high as 5 and 6. These phenomena must be ascribed to metal–metal interactions (Au…Au), which can overrule bonding in classical configurations. Here we describe a study of the molecular structures of tetra(auro)ammonium ((LAu)4N+) and tetra(auro)arsonium ((LAu)4As+) cations (where L is a ligand). We find that the classical tetrahedral structure in these four-coordinate compounds is abandoned in favour of a square-pyramidal geometry once the radius of the central element is too large to allow for metal–metal bonding in a tetrahedral geometry. Thus, whereas the nitrogen compounds adopt a tetrahedral structure, for the larger arsenic atom an arsenic-capped square of gold atoms represents a more favourable core geometry. We have not yet been able to prepare the intermediate phosphorus compound, but we expect it also to have the square-pyramidal structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grohmann, A., Riede, J. & Schmidbaur, H. Nature 345, 140–142 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Schmidbaur, H. Gold. Bull. 23, 11–20 (1990).

    Article  CAS  Google Scholar 

  3. Scherbaum, F., Grohmann, A., Huber, B., Krüger, C. & Schmidbaur, H. Angew. Chem. Int. Edn Engl. 27, 1544–1546 (1988).

    Article  Google Scholar 

  4. Scherbaum, F., Grohmann, A., Müller, G. & Schmidbaur, H. Angew. Chem. Int. Edn Engl. 28, 463–465 (1989).

    Article  Google Scholar 

  5. Scherbaum, F., Huber, B., Müller, G. & Schmidbaur, H. Angew Chem. Int. Edn Engl. 27, 1542–1544 (1988).

    Article  Google Scholar 

  6. Greenwood, N. N. & Earnshaw, A. N. Chemistry of the Elements (Pergamon, Oxford, 1986).

    Google Scholar 

  7. Hoffmann, R. Angew. Chem. Int. Edn Engl. 21, 711–723 (1982).

    Article  Google Scholar 

  8. Stone, F. G. A. Angew. Chem. Int. Edn Engl. 23, 85–95 (1984).

    Article  Google Scholar 

  9. Hall, K. P. & Mingos, D. M. P. Prog, inorg. Chem. 32, 237–254 (1984).

    CAS  Google Scholar 

  10. Slovokhotov, Yu. L. & Struchkov, Yu. T. J. organometall. Chem. 277, 143–146 (1984).

    Article  CAS  Google Scholar 

  11. Perevalova, E. G., Smyslova, E. I., Dyadchenko, V. P., Grandberg, K. I. & Nesmeyanov, A. N. Izv. Akad. Nauk SSSR Ser. Khim. 1455 (1980) (in Russian).

  12. Brodbeck, A. thesis, Univ. of Tübingen (1990).

  13. Brodbeck, A. & Strähle, J. Acta Crystallogr. A46, C-232 (1990).

    Google Scholar 

  14. Kolb, A. & Bissinger, P. thesis, Techn. Univ. München (1990).

  15. Grohmann, A., Riede, J. & Schmidbaur, H. J. chem. Soc. Dalton Trans. 783–788 (1991).

  16. Ramamoorthy, V. & Sharp, P. R. Inorg. Chem. 29, 3336–3340 (1990).

    Article  CAS  Google Scholar 

  17. Weidenhiller, G., Steigelmann, O., Riede, J. & Schmidbaur, H. Angew. Chem. Int. Edn Engl. 29, 433–435 (1991).

    Google Scholar 

  18. Becker, G., Gutekunst, G. & Wessely, H. J. Z. anorg. allg. Chem. 462, 113–129 (1980).

    Article  CAS  Google Scholar 

  19. Nesmeyanov, A. N. et al. J. organometall. Chem. 201, 343–349 (1980).

    Article  CAS  Google Scholar 

  20. Schmidbaur, H., Aly, A. A. M. & Schubert, U. Angew. Chem. Int. Edn Engl. 17, 846–847 (1978).

    Article  Google Scholar 

  21. Jones, P. G. Gold Bull. 19, 46–57 (1986).

    Article  CAS  Google Scholar 

  22. Rösch, N., Görling, A., Ellis, D. E. & Schmidbaur, H. Angew. Chem. Int. Edn Engl. 28, 1357–1359 (1989).

    Article  Google Scholar 

  23. Rösch, N., Görling, A., Ellis, D. E. & Schmidbaur, H. Inorg. Chem. (in the press).

  24. Mingos, D. M. P. J. Chem. Soc. Dalton Trans. 1163–1170 (1976).

  25. Evans, D. G., Mingos, D. M. P. J. organometall. Chem. 232, 171–174 (1982).

    Article  CAS  Google Scholar 

  26. Mingos, D. M. P. Nature 345, 113–114 (1990).

    Article  ADS  Google Scholar 

  27. Mingos, D. M. P. & Kanters, R. P. F. J. organometall. Chem. 384, 405–415 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller, E., Beruda, H., Kolb, A. et al. Change of coordination from tetrahedral gold–ammonium to square-pyramidal gold–arsonium cations. Nature 352, 141–143 (1991). https://doi.org/10.1038/352141a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352141a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing