Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability

Abstract

The triple bond of diatomic nitrogen has among the greatest binding energies of any molecule. At low temperatures and pressures, nitrogen forms a molecular crystal in which these strong bonds co-exist with weak van der Waals interactions between molecules, producing an insulator with a large band gap1. As the pressure is raised on molecular crystals, intermolecular interactions increase and the molecules eventually dissociate to form monoatomic metallic solids, as was first predicted for hydrogen2. Theory predicts that, in a pressure range between 50 and 94 GPa, diatomic nitrogen can be transformed into a non-molecular framework or polymeric structure with potential use as a high-energy-density material3,4,5. Here we show that the non-molecular phase of nitrogen is semiconducting up to at least 240 GPa, at which pressure the energy gap has decreased to 0.4 eV. At 300 K, this transition from insulating to semiconducting behaviour starts at a pressure of approximately 140 GPa, but shifts to much higher pressure with decreasing temperature. The transition also exhibits remarkably large hysteresis with an equilibrium transition estimated to be near 100 GPa. Moreover, we have succeeded in recovering the non-molecular phase of nitrogen at ambient pressure (at temperatures below 100 K), which could be of importance for practical use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrographs of the sample of nitrogen at 70 GPa (a) and 193 GPa (b).
Figure 2: Pressure shifts of the vibron frequencies of nitrogen at 300 K (open circles) and 80 K (solid circles).
Figure 3: Pressure dependence of resistance of nitrogen at room temperature.
Figure 4: Hysteresis of the molecular–non-molecular nitrogen transition.

Similar content being viewed by others

References

  1. Freiman, Yu. A. in Physics of Cryocrystals (eds Manzhelii, V. G. & Freiman, Yu. A.) 538–596 (American Institute of Physics, Woodbury, New York, 1997).

    Google Scholar 

  2. Wigner, E. & Huntington, H. B. On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764–770 (1935).

    Article  ADS  CAS  Google Scholar 

  3. McMahan, A. K. & LeSar, R. Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Martin, R. M. & Needs, R. Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Phys. Rev. B 34, 5082–5092 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Mailhiot, C., Yang, L. H. & McMahan, A. K. Polymeric nitrogen. Phys. Rev. B 46, 14419–14435 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Christe, K. O., Wilson, W. W., Sheehy, J. A. & Boatz, J. A. N5+: A novel homolepic polynitrogen ion as a high energy density material. Angew. Chem. Int. Engl. Edn 38, 2002–2009 (1999).

    Article  Google Scholar 

  7. Helmy, A. A. Calculation of the pressure-induced insulator-metal transition of nitrogen. J. Phys. Condens. Matter 6, 985–988 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Lewis, S. P. & Cohen, M. L. High-pressure atomic phases of solid nitrogen. Phys. Rev. B 46, 11117–11120 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Mitas, L. & Martin, R. M. Quantum Monte Carlo of nitrogen: atom, dimer, atomic, and molecular solids. Phys. Rev. Lett. 72, 2438–2441 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Yakub, E. S. Short-range intermolecular interaction and phase transitions with rearrangement of chemical bonds. J. Low-Temp. Phys. 111, 357–364 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Nellis, W. J., Holmes, N. C., Mitchell, A. C. & van Thiel, M. Phase transition in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 55, 1661–1664 (1984).

    Article  ADS  Google Scholar 

  12. Reichlin, R., Schiferl, D., Martin, S., Vanderborgh, C. & Mills, R. L. Optical studies of nitrogen to 130 GPa. Phys. Rev. Lett. 55, 1464–1467 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Bell, P. M., Mao, H. K. & Hemley, R. J. Observations of solid H2, D2, N2 at pressures around 1.5 megabar at 25 C. Physica B 139–140, 16–20 (1986).

    Article  Google Scholar 

  14. Johnson, K. A. & Ashcroft, N. W. Structure and bandgap closure in dense hydrogen. Nature 403, 632–635 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Städele, M. & Martin, R. M. Metallization of molecular hydrogen: predictions from exact-exchange calculations. Phys. Rev. Lett. 84, 6070–6073 (2000).

    Article  ADS  Google Scholar 

  16. Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I. & Amaya, K. Superconductivity in oxygen. Nature 393, 767–769 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Eremets, M. I. et al. Electrical conductivity of Xe at megabar pressures. Phys. Rev. Lett. 83, 2797–2800 (2000).

    Article  ADS  Google Scholar 

  18. Goncharov, A. F., Gregoryanz, E., Mao, H. K., Liu, Z. & Hemley, R. J. Optical evidence for nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–1265 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Eremets, M. I. Experimental High-Pressure Techniques 16, 59 (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  20. Brovman, E. G., Kagan, Y. & Kholas, A. Structure of metallic hydrogen at zero pressure. Sov. Phys. JETP 34, 1300–1315 (1972).

    ADS  Google Scholar 

  21. Hemley, R. J. & Mao, H. K. Phase transition in solid molecular hydrogen at ultrahigh pressures. Phys. Rev. Lett. 61, 857–860 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Nayarana, C., Luo, H., Orloff, J. & Ruoff, A. L. Solid hydrogen at 342 GPa: no evidence for an alkali metal. Nature 393, 46–49 (1998).

    Article  ADS  Google Scholar 

  23. Olijnyk, H. & Jephcoat, A. P. Vibrational dynamics of isotopically dilute nitrogen to 104 GPa. Phys. Rev. Lett. 83, 332–335 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Mao, H. K., Xu, J. & Bell, P. M. Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res. B 91, 4673–4676 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gramsch, V. V. Struzhkin and A. F. Goncharov for useful discussions and comments on the manuscript. This work was supported by the NSF and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Hemley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremets, M., Hemley, R., Mao, Hk. et al. Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001). https://doi.org/10.1038/35075531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing