Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree rings

Abstract

High-resolution proxies of past climate are essential for a better understanding of the climate system1. Tree rings are routinely used to reconstruct Holocene climate variations at high temporal resolution2, but only rarely have they offered insight into climate variability during earlier periods3. Fitzroya cupressoides—a South American conifer which attains ages up to 3,600 years—has been shown to record summer temperatures in northern Patagonia during the past few millennia4. Here we report a floating 1,229-year chronology developed from subfossil stumps of F. cupressoides in southern Chile that dates back to approximately 50,000 14C years before present. We use this chronology to calculate the spectral characteristics of climate variability in this time, which was probably an interstadial (relatively warm) period. Growth oscillations at periods of 150–250, 87–94, 45.5, 24.1, 17.8, 9.3 and 2.7–5.3 years are identified in the annual subfossil record. A comparison with the power spectra of chronologies derived from living F. cupressoides trees shows strong similarities with the 50,000-year-old chronology, indicating that similar growth forcing factors operated in this glacial interstadial phase as in the current interglacial conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 1,229-year-long floating tree-ring chronology from Pelluco, southern Chile.
Figure 2: The spectral and cross-spectral characteristics of the subfossil (a) and living (b) F. cupressoides woods.

Similar content being viewed by others

References

  1. Oldfield, F. (ed.) Global Change Report No. 45 (International Geosphere-Biosphere Programme (IGBP), Stockholm, 1998).

  2. Fritts, H. C. Reconstructing Large-Scale Climatic Patterns from Tree-Ring Data (Univ. Arizona Press, Tucson, 1991).

    Google Scholar 

  3. Pilcher, J. R., Baillie, M. G. L., Schmidt, B. & Becker, B. A 7,272-year tree-ring chronology for western Europe. Nature 312, 150–152 (1984).

    Article  ADS  Google Scholar 

  4. Villalba, R. et al. in Climate Fluctuations and Forcing Mechanisms of the Last 2,000 Years (eds Jones, P. D., Bradley, R. S. & Jouzel, J.) 161–189 (Springer, Berlin, 1996).

    Google Scholar 

  5. Bradley, R. S. Quaternary Paleoclimatology (Chapman & Hall, London, 1992).

    Google Scholar 

  6. Clapperton, C. Quaternary Geology and Geomorphology of South America (Elsevier, Amsterdam, 1993).

    Google Scholar 

  7. Denton, G. H. et al. Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geografis. Ann. A 81, 167–229 (1999).

    Article  Google Scholar 

  8. Heusser, C. J., Heusser, L. E. & Lowell, T. V. Paleoecology of the southern Chilean Lake District—Isla Grande de Chiloé during middle—late Llanquihue glaciation and deglaciation. Geografis. Ann. A 81, 231–284 (1999).

    Article  Google Scholar 

  9. Heusser, C. J. et al. Pollen sequence from the Chilean Lake District during the Llanquihue glaciation in marine oxygen Isotope Stages 4-2. J. Quat. Sci. 15, 115–125 (2000).

    Article  Google Scholar 

  10. Denton, G. H. et al. Interhemispheric linkage of paleoclimate during the last glaciation. Geografis. Ann. A 81, 107–153 (1999).

    Article  Google Scholar 

  11. Lara, A. & Villalba, R. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260, 1104–1106 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Villalba, R. Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America. Clim. Change 26, 183–197 (1994).

    Article  ADS  Google Scholar 

  13. Roig, F. A. Dendroklimatologische Untersuchungen an Fitzroya cupressoides im Gebiet der Küstenkordillere un der Südlichen Anden. Thesis, Basel Univ. (1996).

  14. Miller, A. in Climates of Central and South America (ed. Schwerdtfeger, W.) 113–145 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  15. Roig, F. A., Roig, C., Rabassa, J. & Boninsegna, J. A. Fuegian floating tree-ring chronologies from sub-fossil Nothofagus woods. Holocene 6, 469–476 (1996).

    Article  ADS  Google Scholar 

  16. Lomnitz, C. Major earthquakes and tsunamis in Chile during the period 1535 to 1965. Geol. Rundsch. 59, 938–960 (1970).

    Article  ADS  Google Scholar 

  17. Klohn, C. Beobachtungen über die Reste eines späteiszeitlichen Alerceswaldes. Z. Naturfreunde Wanderer 1975–1976, 75–78 (1976).

    Google Scholar 

  18. Lara, A. The dynamics and disturbance regimes of Fitzroya cupressoides forests in the south-central Andes of Chile. Thesis, Univ. Colorado (1991).

  19. Porter, S. C. Pleistocene glaciation in the southern Lake District of Chile. Quat. Res. 16, 263–292 (1981).

    Article  CAS  Google Scholar 

  20. Cook, E. R., Briffa, K. R., Shiyatov, S. G. & Mazepa, V. S. in Methods of Dendrochronology (eds Cook, E. R. & Kairiukstis, L. A.) 104–123 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  21. Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A. & Funkhouser, G. The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5, 229–237 (1995).

    Article  ADS  Google Scholar 

  22. Leventer, A. et al. Productivity cycles of 200–300 years in the Antarctic Peninsula region: Understanding linkages among the sun, atmosphere, oceans, sea ice, and biota. Geol. Soc. Am. Bull. 108, 1626–1644 (1996).

    Article  ADS  Google Scholar 

  23. Stuiver, M. & Braziunas, T. F. Atmospheric 14C and century-scale solar oscillations. Nature 338, 405–408 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Lammy, F., Hebbeln, D. & Wefer, G. Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5S) and palaeoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 141, 233–251 (1998).

    Article  Google Scholar 

  25. Salinger, M. J. Palaeoclimates north and south. Nature 291, 106–107 (1981).

    Article  ADS  Google Scholar 

  26. Markgraf, V. et al. Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Clim. Dyn. 6, 193–211 (1992).

    Article  Google Scholar 

  27. Boninsegna, J. A. in Climate Since A. D. 1500 (eds Jones, P. D. & Bradley, R. S.) 446–462 (Routledge, London, 1992).

    Google Scholar 

  28. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Holden-Day, San Francisco, 1968).

    MATH  Google Scholar 

  29. Marple, S. L. Jr. Digital Spectral Analysis with Applications (Prentice Hall, Englewood Cliffs, New Jersey, 1987).

    Google Scholar 

  30. Burg, J. P. in Modern Spectrum Analysis (ed. Childers, D. G.) 42–48 (IEEE Press, New York, 1978).

    Google Scholar 

  31. Lara, A. et al. in Dendrochronology in Latin America (ed. Roig, F. A.) 217–244 (EDIUNC, Mendoza, 2000).

    Google Scholar 

Download references

Acknowledgements

We thank J. Betancourt, D. Stahle, V. Markgraf and J. Pilcher for comments on the manuscript. AMS dates were provided in part through funding by NSF (Earth System History) and the Inter-American Institute (IAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel A. Roig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roig, F., Le-Quesne, C., Boninsegna, J. et al. Climate variability 50,000 years ago in mid-latitude Chile as reconstructed from tree rings. Nature 410, 567–570 (2001). https://doi.org/10.1038/35069040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35069040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing