Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Manipulation of elementary charge in a silicon charge-coupled device

Abstract

The ultimate limit in the operation of an electronic device is the manipulation of a single charge. Such a limit has been achieved in single-electron tunnelling devices1,2. However, these devices are based on multiple tunnel barriers and conductive islands, which are complex structures to fabricate. Here we demonstrate another type of device that can also manipulate elementary charge, but which is more suitable for large-scale integration. The device consists of two closely packed silicon wire-MOSFETs, which are commonly used building blocks of electronic circuits. We have developed a scheme to generate and store holes in the channels of either of these MOSFETs. Subsequently, holes can be transferred between the two MOSFETs at the level of an elementary charge, and their exact position can be monitored. This single-charge transfer device, which is operated at 25 K, is in effect a charge-coupled device3. This is also the first realization of a silicon-based device that manipulates elementary charge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic view of a single-electron CCD on a silicon-on-insulator wafer.
Figure 2: Top-view SEM image and simplified circuit diagram of the device.
Figure 3: Our method of sensing an elementary charge.
Figure 4: Demonstration of the manipulation of an elementary charge.

Similar content being viewed by others

References

  1. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B L., Lee, P. A. & Webb, R. B.) 173–271 (Elsevier, Amsterdam, 1991).

    Book  Google Scholar 

  2. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunnelling (Plenum, New York, 1992).

    Book  Google Scholar 

  3. Barbe, D. F. (ed.) Charge-Coupled Devices (Springer, Berlin, 1980).

    Book  Google Scholar 

  4. Likharev, K. K. Single-electron devices and their applications. Proc. IEEE 87, 606–632 (1999).

    Article  CAS  Google Scholar 

  5. Averin, D. V. & Likharev, K. K. Coulomb blockade of tunneling, and coherent oscillations in small tunnel junctions. J. Low Temp. Phys. 62, 345–372 (1986).

    Article  ADS  Google Scholar 

  6. Meriav, U. & Foxman, E. B. Single-electron phenomena in semiconductors. Semicond. Sci. Technol. 10, 255–284 (1995).

    Article  Google Scholar 

  7. Takahashi, Y. et al. Silicon single-electron devices. Int. J. Electron. 86, 605–639 (1999).

    Article  CAS  Google Scholar 

  8. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–476 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Likharev, K. K. Single-electron transistors: Electrostatic analogs of the DC SQUID's. IEEE Trans. Mag. 23, 1142–1145 (1987).

    Article  ADS  Google Scholar 

  10. Fulton, T. A. & Dolan, G. J. Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett. 59, 109–112 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Kuzmin, L. S. & Likharev, K. K. Direct experimental observation of discrete correlated single-electron tunneling. JETP Lett. 45, 495–497 (1987).

    ADS  Google Scholar 

  12. Meriav, U., Kastner, M. A. & Wind, S. J. Single-electron charging and periodic conductance resonances in GaAs nanostructures. Phys. Rev. Lett. 65, 771–774 (1990).

    Article  ADS  Google Scholar 

  13. Su, B., Goldman, V. J. & Cunningham, J. E. Observation of single-electron charging in double-barrier heterostructures. Science 255, 313–315 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Scott-Thomas, J. H., Field, S. B., Kastner, M. A., Smith, H. I. & Antoniadis, D. A. Conductance oscillations periodic in the density of a one-dimensional electron gas. Phys. Rev. Lett. 62, 583–586 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Ali, D. & Ahmed, H. Coulomb blockade in silicon tunnel junction device. Appl. Phys. Lett. 64, 2119–2120 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Takahashi, Y. et al. Fabrication technique for Si single-electron transistor operating at room temperature. Electron. Lett. 31, 136–137 (1995).

    Article  CAS  Google Scholar 

  17. Dresselhaus, P. D., Ji, L., Han, S., Lukens, J. E. & Likharev, K. K. Measurement of single electron lifetimes in a multijunction trap. Phys. Rev. Lett. 72, 3226–3229 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Yano, K. et al. Room-temperature single-electron memory. IEEE Trans. Electron Devices 41, 1628–1637 (1994).

    Article  ADS  Google Scholar 

  19. Fujiwara, A., Takahashi, Y., Murase, K. & Tabe, M. Time-resolved measurement of single-electron tunneling in a Si single-electron transistor with satellite Si islands. Appl. Phys. Lett. 67, 2957–2959 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Guo, L., Leobandung, E. & Chou, S. Y. A single-electron transistor memory operating at room temperatures. Science 275, 649–651 (1997).

    Article  CAS  Google Scholar 

  21. Geerlings, L. J. et al. Frequency-locked turnstile device for single electrons. Phys. Rev. Lett. 64, 2691–2694 (1990).

    Article  ADS  Google Scholar 

  22. Pothier, H. et al. Single electron pump fabricated with ultrasmall normal tunnel junctions. Physica B 169, 573–574 (1991).

    Article  ADS  Google Scholar 

  23. Keller, M. W., Martinis, J. M., Zimmerman, N. M. & Steinbach, A. H. Accuracy of electron counting using a 7-junction electron pump. Appl. Phys. Lett. 69, 1804–1806 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Asahi, N., Akazawa, M. & Amemiya, Y. Single-electron logic device based on the binary decision diagram. IEEE Trans. Electron Devices 44, 1109–1116 (1997).

    Article  ADS  Google Scholar 

  25. Fujiwara, A. et al. Double-island single-electron devices: A useful unit device for single-electron logic LSI's. IEEE Trans. Electron Devices 46, 954–959 (1999).

    Article  ADS  Google Scholar 

  26. Single, C., Augke, R., Prins, F. E., Wharam, D. A. & Kern, D. P. Single-electron charging in doped silicon double dots. Semicond. Sci. Technol. 14, 1165–1168 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Cristoloveanu, S. & Li, S. S. Electrical Characterization of Silicon-On-Insulator Materials and Devices (Kluwer Academic, Boston, 1995).

    Book  Google Scholar 

  28. Colinge, J. P. Silicon-On-Insulator Technology: Materials to VLSI (Kluwer Academic, Boston, 1997).

    Book  Google Scholar 

  29. Fujiwara, A., Takahashi, Y. & Murase, K. Observation of single electron-hole recombination and photon-pumped current in Si single-electron transistors. Phys. Rev. Lett. 78, 1532–1535 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Lent, C. S., Tougaw, P. D., Porod, W. & Bernstein, G. Quantum cellular automata. Nanotechnology 4, 49–67 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Murase and T. Ogino for their encouragement. We also thank T. Yamaguchi, K. Yamazaki, H. Namatsu, Y. Watanabe, J. Hayashi, T. Saito and K. Kurihara for help in the device fabrication, and S. Horiguchi, H. Inokawa and Y. Ono for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, A., Takahashi, Y. Manipulation of elementary charge in a silicon charge-coupled device. Nature 410, 560–562 (2001). https://doi.org/10.1038/35069023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35069023

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing