Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome

Abstract

Introns are removed from nuclear messenger RNA precursors through two sequential phospho-transesterification reactions in a dynamic RNA–protein complex called the spliceosome1,2. But whether splicing is catalysed by small nuclear RNAs3,4 in the spliceosome is unresolved. As the spliceosome is a metalloenzyme5,6,7, it is important to determine whether snRNAs coordinate catalytic metals. Here we show that yeast U6 snRNA coordinates a metal ion that is required for the catalytic activity of the spliceosome. With Mg2+, U6 snRNA with a sulphur substitution for the pro-RP or pro-SP non-bridging phosphoryl oxygen of nucleotide U80 reconstitutes a fully assembled yet catalytically inactive spliceosome. Adding a thiophilic ion such as Mn2+ allows the first transesterification reaction to occur in the U6/sU80(SP)- but not the U6/sU80(RP)-reconstituted spliceosome. Mg2+ competitively inhibits the Mn2+-rescued reaction, indicating that the metal-binding site at U6/U80 exists in the wild-type spliceosome and that the site changes its metal requirement for activity in the SP spliceosome. Thus, U6 snRNA contributes to pre-messenger RNA splicing through metal-ion coordination, which is consistent with RNA catalysis by the spliceosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: U6 snRNA with a phosphorothioate substitution at U80 fails to reconstitute splicing.
Figure 2: Spliceosome maturation is not affected by phosphorothioate substitution at U80 of U6 but splicing only occurs in the SP diastereomer with a thiophilic metal ion.
Figure 3: With U6/sU80(SP) RNA, only the first of the two transesterification reactions occurs in the presence of Mn2+, which is competitively inhibited by Mg2+.
Figure 4: A representation of RNAs and metal ions in the yeast spliceosome before the first catalytic step.

Similar content being viewed by others

References

  1. Sharp, P. A. Split genes and RNA splicing. Cell 77, 805–815 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Guthrie, C. The spliceosome is a dynamic ribonucleoprotein machine. Harvey Lect. 90, 59–80 (1994).

    PubMed  Google Scholar 

  3. Nilsen, T. W. in RNA Structure and Function (eds Simons, R. & Grunberg-Manago, M.) 279–307 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1998).

    Google Scholar 

  4. Collins, C. A. & Guthrie, C. The question remains: is the spliceosome a ribozyme? Nature Struct. Biol. 7, 850–854 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sontheimer, E. J., Sun, S. & Piccirilli, J. A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gordon, P. M., Sontheimer, E. J. & Piccirilli, J. A. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 6, 199–205 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Staley, J. P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Pyle, A. M. Ribozymes: a distinct class of metalloenzymes. Science 261, 709–714 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Sigel, R. K. O., Song, B. & Sigel, H. Stabilities and structures of metal ion complexes of adenosine 5′-O-thiomonophosphate (AMPS2-) in comparison with those of its parent nucleotide (AMP2-) in aqueous solution. J. Am. Chem. Soc. 119, 744–755 (1997).

    Article  CAS  Google Scholar 

  11. Fabrizio, P. & Abelson, J. Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucleic Acids Res. 20, 3659–3664 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, Y. T., Maroney, P. A., Darzynkiwicz, E. & Nilsen, T. W. U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA 1, 46–54 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Brautigam, C. A. & Steitz, T. A. Structural principles for the inhibition of the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates. J. Mol. Biol. 277, 363–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, J. S. & Nikonowicz, E. P. Phosphorothioate substitution can substantially alter RNA conformation. Biochemistry 39, 5642–5652 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, C. H. & Abelson, J. Site-specific crosslinks of yeast U6 snRNA to the pre-mRNA near the 5′ splice site. RNA 2, 995–1010 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, S. H. & Lin, R. J. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell. Biol. 16, 6810–6819 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basu, S. & Strobel, S. A. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain. RNA 5, 1399–1407 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moore, M. J. & Sharp, P. A. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365, 364–368 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Piccirilli, J. A., Vyle, J. S., Caruthers, M. H. & Cech, T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Weinstein, L. B., Jones, B. C., Cosstick, R. & Cech, T. R. A second catalytic metal ion in group I ribozyme. Nature 388, 805–808 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Peracchi, A., Beigelman, L., Scott, E. C., Uhlenbeck, O. C. & Herschlag, D. Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J. Biol. Chem. 272, 26822–26826 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Murray, J. B. & Scott, W. G. Does a single metal ion bridge the A-9 and scissile phosphate groups in the catalytically active hammerhead ribozyme structure? J. Mol. Biol. 296, 33–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Christian, E. L. & Yarus, M. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry 32, 4475–4480 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Christian, E. L., Kaye, N. M. & Harris, M. E. Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6, 511–519 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chanfreau, G. & Jacquier, A. Catalytic site components common to both splicing steps of a group II intron. Science 266, 1383–1387 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Madhani, H. D. & Guthrie, C. Randomization-selection analysis of snRNAs in vivo: evidence for a tertiary interaction in the spliceosome. Genes Dev. 8, 1071–1086 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Valadkhan, S. & Manley, J. L. A tertiary interaction detected in a human U2–U6 snRNA complex assembled in vitro resembles a genetically proven interaction in yeast. RNA 6, 206–219 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boudvillain, M., de Lencastre, A. & Pyle, A. M. A tertiary interaction that links active-site domains to the 5′ splice site of a group II intron. Nature 406, 315–318 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Burgers, P. M. & Eckstein, F. Absolute configuration of the diastereomers of adenosine 5′-O-(1-thiotriphosphate): consequences for the stereochemistry of polymerization by DNA-dependent RNA polymerase from Escherichia coli. Proc. Natl Acad. Sci. USA 75, 4798–4800 (1978).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moore, M. J. & Sharp, P. A. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256, 992–997 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Abelson for U6 plasmids; D. McPheeters and D. Ryan for advice on RNA ligation procedure; and T. Nilsen, E. Sontheimer, D. McPheeters, J. Rossi, G. Edwalds-Gilbert and E. Silverman for critical reading of the manuscript. This work is supported by grants from NIH to J.T. and R.-J.L. The Molecular Dynamics phosphorimager was purchased with a core grant from NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Jang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yean, SL., Wuenschell, G., Termini, J. et al. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000). https://doi.org/10.1038/35048617

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048617

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing