Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

First-order transition in confined water between high-density liquid and low-density amorphous phases

Abstract

Supercooled water and amorphous ice have a rich metastable phase behaviour. In addition to transitions between high- and low-density amorphous solids1,2, and between high- and low-density liquids3,4,5,6,7,8, a fragile-to-strong liquid transition has recently been proposed9,10, and supported by evidence from the behaviour of deeply supercooled bilayer water confined in hydrophilic slit pores11. Here we report evidence from molecular dynamics simulations for another type of first-order phase transition—a liquid-to-bilayer amorphous transition—above the freezing temperature of bulk water at atmospheric pressure. This transition occurs only when water is confined in a hydrophobic slit pore12,13,14 with a width of less than one nanometre. On cooling, the confined water, which has an imperfect random hydrogen-bonded network, transforms into a bilayer amorphous phase with a perfect network (owing to the formation of various hydrogen-bonded polygons) but no long-range order. The transition shares some characteristics with those observed in tetrahedrally coordinated substances such as liquid silicon15,16, liquid carbon17 and liquid phosphorus18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the potential energy.
Figure 2: Structure of the confined two-layer water in liquid, amorphous, and crystalline ice phases.

Similar content being viewed by others

References

  1. Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting’ ice I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–394 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Mishima, O., Calvert, L. D. & Whalley, E. An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Stanley, H. E. et al. Is there a second critical point in liquid water? Physica A 205, 122–139 (1994).

    Article  ADS  Google Scholar 

  5. Tanaka, H. A self-consistent phase diagram for supercooled water. Nature 380, 328–330 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Tanaka, H. Phase behaviors of supercooled water: Reconciling a critical point of amorphous ices with spinodal instability. J. Chem. Phys. 105, 5099–5111 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Sciortino, F., Poole, P. H., Essmann, U. & Stanley, H. E. Line of compressibility maxima in the phase diagram of supercooled water. Phys. Rev. E 55, 727–737 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Angell, C. A. Water-II is a strong liquid. J. Phys. Chem. 97, 6339–6341 (1993).

    Article  CAS  Google Scholar 

  10. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Bergman, R. & Swenson, J. Dynamics of supercooled water in confined geometry. Nature 403, 283–286 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Bellissent-Funel, M.-C., Chen, S. H. & Zanotti, J. M. X-ray and neutron scattering studies of the structure of water at a hydrophobic surface. J. Chem. Phys. 104, 10023–10029 (1996).

    Article  ADS  Google Scholar 

  13. Koga, K., Zeng, X. C. & Tanaka, H. Freezing of confined water: a bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett. 79, 5262–5265 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Meyer, M. & Stanley, H. E. Liquid-liquid phase transition in confined water: A Monte Carlo study. J. Phys. Chem. B 103, 9728–9730 (1999).

    Article  CAS  Google Scholar 

  15. Thompson, M. O. et al. Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation. Phys. Rev. Lett. 52, 2360–2363 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Angell, C. A., Borick, S. S. & Grabow, M. H. Glass transitions and first order liquid-metal-to-semiconductor transitions in 4-5-6 covalent systems. J. Non-Cryst. Solids 205, 463–471 (1996).

    Article  ADS  Google Scholar 

  17. Glosli, J. N. & Ree, F. H. Liquid-liquid phase transformation in carbon. Phys. Rev. Lett. 82, 4659–4662 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Katayama, Y. et al. A first-order liquid–liquid phase transition in phosphorus. Nature 403, 170–173 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Gao, G. T., Zeng, X. C. & Tanaka, H. The melting temperature of proton-disordered hexagonal ice: A computer simulation of TIP4P model of water. J. Chem. Phys. 112, 8534–8538 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Gillen, K. T., Douglass, D. C. & Hoch, M. J. R. Self-diffusion in liquid water to -31°. J. Chem. Phys. 57, 5117–5119 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Goto, K., Hondoh, T. & Higashi, A. Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by X-ray topography. Jpn J. Appl. Phys. 25, 351–357 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Smith, R. S. & Kay, B. D. The existence of supercooled water at 150 K. Nature 403, 283–296 (1999).

    Google Scholar 

  25. Zallen, R. in The Physics of Amorphous Solids 63–67 (Wiley, New York, 1998).

    Book  Google Scholar 

  26. Tse, J. S. et al. The mechanisms for pressure-induced amorphization of ice Ih. Nature 400, 647–649 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Soper, A. K. & Ricci, M. A. Structures of high-density and low-density water. Phys. Rev. Lett. 84, 2881–2884 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity of supercooled water. Nature 406, 166–169 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Angell, C. A., Bressel, R. D., Hemmati, M., Sare, E. J. & Tucker, J. C. Water and its anomalies in perspective: tetrahedral liquids with and without liquid-liquid phase transitions. Phys. Chem. Chem. Phys. 2, 1559–1566 (2000).

    Article  CAS  Google Scholar 

  30. Tanaka, H. Fluctuation of local order and connectivity of water molecules in two phases of supercooled water. Phys. Rev. Lett. 80, 113–116 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

K.K. and H.T. are supported by the Japan Society for the Promotion of Science (JSPS), the Japan Ministry of Education, and the Institute for Molecular Science (IMS). X.C.Z. is supported by the US NSF and Office of Naval Research (ONR), and by a JSPS fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, K., Tanaka, H. & Zeng, X. First-order transition in confined water between high-density liquid and low-density amorphous phases. Nature 408, 564–567 (2000). https://doi.org/10.1038/35046035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing