Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum

Abstract

The high-pressure solubility in silicate liquids of moderately siderophile ‘iron-loving’ elements (such as nickel and cobalt) has been used to suggest that, in the early Earth, an equilibrium between core-forming metals and the silicate mantle was established at the bottom of a magma ocean1,2. But observed concentrations of the highly siderophile elements—such as the platinum-group elements platinum, palladium, rhenium, iridium, ruthenium and osmium—in the Earth's upper mantle can be explained by such a model only if their metal–silicate partition coefficients at high pressure are orders of magnitude lower than those determined experimentally at one atmosphere (refs 3,4,5,6,7,8). Here we present an experimental determination of the solubility of palladium and platinum in silicate melts as a function of pressure to 16 GPa (corresponding to about 500 km depth in the Earth). We find that both the palladium and platinum metal–silicate partition coefficients, derived from solubility, do not decrease with pressure—that is, palladium and platinum retain a strong preference for the metal phase even at high pressures. Consequently the observed abundances of palladium and platinum in the upper mantle seem to be best explained by a ‘late veneer’ addition of chondritic material to the upper mantle following the cessation of core formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pd and Pt metal/silicate concentration ratios.

Similar content being viewed by others

References

  1. Li, J. & Agee, C. B. Geochemistry of mantle-core differentiation at high pressure. Nature 381, 686– 689 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Righter, K. & Drake, M. J. Metal-silicate equilibrium in a homogeneously accreting Earth: new results for Re. Earth Planet. Sci. Lett. 146, 541–553 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Borisov, A., Palme, H. & Spettel, B. Solubility of palladium in silicate melts: implications for core formation in the Earth. Geochim. Cosmochim. Acta 58, 705–716 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Borisov, A. & Palme, H. Experimental determination of the solubility of platinum in silicate melts. Geochim. Cosmochim. Acta 61, 4349–4357 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Ertel, W. et al. Solubilities of platinum and rhodium in a haplobasaltic melt at 1300°C. Geochim. Cosmochim. Acta 63, 2439–2449 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Borisov, A. & Palme, H. The solubility of iridium in silicate melts: new data from experiments with Ir10Pt90 alloys. Geochim. Cosmochim. Acta 59, 481– 485 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Borisov, A. & Palme, H. Noble metal/silicate melt equilibria: experimental investigations and geochemical implications. Eur. J. Mineral. 9 (Suppl.), 59 (1997 ).

    Google Scholar 

  8. O'Neill, H. St C. et al. Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle's early history. Chem. Geol. 120, 255–273 (1995).

    Article  ADS  CAS  Google Scholar 

  9. O'Neill, H. St C. & Palme, H. in The Earth's Mantle, Composition, Structure and Evolution (ed. Jackson, I.), 3– 126 (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  10. Murthy, V. R. Early differentiation of the Earth and the problem of mantle siderophile elements: a new approach. Science 253, 303–306 (1991); corrections 253, 1467 ( 1991).

    Article  ADS  Google Scholar 

  11. Walter, M. Screws tighten on the core. Nature 398, 563–565 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Ringwood, A. E. The Earth's core: its composition, formation and bearing upon the origin of the Earth. Proc. R. Soc. Lond. A 395, 1– 46 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Wänke, H., Dreibus, G. & Jagoutz, E. in Archean Geochemistry (ed. Kröner, A.) 1–24 (Springer, Berlin, 1984).

    Book  Google Scholar 

  14. O'Neill, H. St C. The origin of the Moon and the early history of the Earth—a chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Walter, M. At the magma ocean floor. Nature 381, 646 –647 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Morgan, J. W., Wandless, G. A., Petrie, R. K. & Irving, A. J. Composition of the Earth's upper mantle-I. Siderophile trace elements in ultramafic nodules. Tectonophysics 75, 47– 67 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Jagoutz, E. et al. The abundances of major, minor and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. Proc. Lunar Planet. Sci. Conf. 10, 2031–2050 (1979).

    ADS  Google Scholar 

  18. Morgan, J. W. Ultramafic xenoliths: clues to Earth's late accretionary history. J. Geophys. Res. 91, 12375–12387 (1986).

    Article  ADS  Google Scholar 

  19. Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundances of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Holzheid, A., Palme, H. & Chakraborty, S. The activities of NiO, CoO and FeO in silicate melts. Chem. Geol. 139, 21–38 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M. & Kelley, K. K. Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, Ohio, 1973).

    Google Scholar 

  22. Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517– 520 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Hillgren, V. J., Drake, M. J. & Rubie, D. C. High-pressure and high-temperature experiments on core-mantle segregation in the accreting Earth. Science 264, 1442–1445 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Seckendorff, V. & O'Neill, H. St C. An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273, and 1423 K and 1.6 GPa. Contrib. Mineral. Petrol. 113 , 196–207 (1993).

    Article  ADS  Google Scholar 

  25. Rubie, D. C., Karato, S., Yan, H. & O'Neill, H. St C. Low differential stress and controlled chemical environment in multi-anvil high pressure experiments. Phys. Chem. Miner. 20, 315– 322 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Sylvester, P. J. & Eggins, S. M. Analysis of Re, Au, Pt, Pd, and Rh in NIST glass certified reference materials and natural basalt glasses by laser ablation-ICP-MS. Geostand. Newsl. 21, 215–229 (1997).

    Article  CAS  Google Scholar 

  27. Holzheid, A. & Palme, H. The influence of FeO on the solubilities of Co and Ni in silicate melts. Geochim. Cosmochim. Acta 60, 1181–1193 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

High pressure experiments were performed at the Bayerisches Geoinstitut under the EU ‘TMR - Large Scale Facilities’ (D.C.R.) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Holzheid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzheid, A., Sylvester, P., O'Neill, H. et al. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum. Nature 406, 396–399 (2000). https://doi.org/10.1038/35019050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019050

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing