Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2

Abstract

Highly porous materials such as mesoporous oxides are of technological interest1 for catalytic, sensing and remediation applications: the mesopores (of size 2–50 nm) permit ingress by molecules and guests that are physically excluded from microporous materials. Connecting the interior of porous materials with a nanoscale or ‘molecular’ wire would allow the direct electronic control (and monitoring) of chemical reactions and the creation of nanostructures for high-density electronic materials2. The challenge is to create an electronic pathway (that is, a wire) within a mesoporous platform without greatly occluding its free volume and reactive surface area3. Here we report the synthesis of an electronically conductive mesoporous composite—by the cryogenic decomposition of RuO4—on the nanoscale network of a partially densified silica aerogel. The composite consists of a three-dimensional web of interconnected (4-nm in diameter) crystallites of RuO2, supported conformally on the nanoscopic silica network. The resulting monolithic (RuO2SiO2) composite retains the free volume of the aerogel and exhibits pure electronic conductivity. In addition to acting as a wired mesoporous platform, the RuO2-wired silica aerogel behaves as a porous catalytic electrode for the oxidation of chloride to molecular chlorine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impedance measurements on a RuO2-coated SiO2 aerogel.
Figure 2: Comparison of nanoscale RuO2 and polycrystalline, anhydrous RuO2.
Figure 3: Transmission electron micrographs and schematic of RuO2SiO2 aerogel composites.
Figure 4: Electrocatalysed oxidation of chloride at a RuO2SiO2 aerogel composite electrode.

Similar content being viewed by others

References

  1. Ciesla, U. & Schüth, F. Ordered mesoporous materials. Micropor. Mesopor. Mater. 27, 131– 149 (1999).

    Article  CAS  Google Scholar 

  2. Sasaki, M. et al. Novel templating fabrication of nanostructured Pt clusters and wires in the ordered cylindrical mesopores of FSM-16 and their unique properties in catalysis and magnetism. Micropor. Mesopor. Mater. 21, 597–606 (1998).

    Article  CAS  Google Scholar 

  3. Hulteen, J. C. & Martin, C. R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075–1087 (1997).

    Article  CAS  Google Scholar 

  4. Trasatti, S. Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225–241 ( 1991).

    Article  CAS  Google Scholar 

  5. Trasatti, S. & Lodi, G. in Electrodes of Conductive Metallic Oxides, Part B (ed. Trasatti, S.) Ch. 10 (Elsevier, Amsterdam, 1981).

    Google Scholar 

  6. Trasatti, S. & Kurzwel, P. Electrochemical supercapacitors as versatile energy stores. Platinum Metals Rev. 38 , 46–56 (1994).

    CAS  Google Scholar 

  7. Ardizzone, S. & Trasatti, S. Interfacial properties of oxides with technological impact. Adv. Colloid Interf. Sci. 64, 173–251 (1996).

    Article  CAS  Google Scholar 

  8. Zhang, Z. B., Gekhtman, D., Dresselhaus, M. S. & Ying, J. Y. Processing and characterization of single-crystalline ultrafine bismuth nanowires. Chem. Mater. 11, 1659– 1665 (1999).

    Article  CAS  Google Scholar 

  9. Hüsing, N. & Schubert, U. Aerogels—airy materials: chemistry, structure, and properties. Angew. Chem. Int. Edn Engl. 37, 22–45 ( 1998).

    Article  Google Scholar 

  10. Brinker, C. J. & Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing 503– 505, 760, 856 (Academic Press, San Diego, 1989).

    Google Scholar 

  11. Yamamichi, S. et al. A stacked capacitor technology with ECR plasma MOCVD (Ba,Sr)TiO 3 and RuO2/Ru/TiN/TiSix storage nodes for Gb-scale DRAM’s. IEEE Trans. Elec. Dev. 44, 1076–1083 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Hunt, A. J., Ayers, M. R. & Cao, W. Q. Aerogel composites using chemical-vapor infiltration. J. Non-Cryst. Solids 185, 227– 232 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Merzbacher, C. I. et al. Characterization of multi-phase aerogels by contrast-matching SANS. J. Non-Cryst. Solids 225, 234– 238 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Merzbacher, C. I., Barker, J. G., Long, J. W. & Rolison, D. R. The morphology of nanoscale deposits of ruthenium oxide in silica aerogels. Nanostruct. Mater. 12, 551– 554 (1999).

    Article  Google Scholar 

  15. Yuan, Z., Puddephatt, R. J. & Sayer, M. Low-temperature chemical vapor deposition of ruthenium dioxide from ruthenium tetroxide: a simple approach to high-purity RuO 2 films. Chem. Mater. 5, 908– 910 (1993).

    Article  CAS  Google Scholar 

  16. Gaylarde, P. & Sarkany, I. Ruthenium tetroxide for fixing and staining cytoplasmic membranes. Science 161, 1157–1158 (1968).

    Article  ADS  CAS  Google Scholar 

  17. Sankar, J., Sham, T. K. & Puddephatt, R. J. Low temperature chemical vapour deposition of ruthenium and ruthenium dioxide on polymer surfaces. J. Mater. Chem. 9, 2439–2444 (1999).

    Article  CAS  Google Scholar 

  18. Kreider, K. G. Thin film ruthenium oxide-iridium oxide thermocouples. Mat. Res. Soc. Symp. Proc. 234, 205–211 (1991).

    Article  CAS  Google Scholar 

  19. Rosenblum, S. S., Weber, W. H. & Chamberland, B. L. Raman-scattering observation of the rutile-to-CaCl 2 phase transition in RuO2. Phys. Rev. B 56, 529–533 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Mar, S. Y., Chen, C. S., Huang, Y. S. & Tiong, K. K. Characterization of RuO2 thin-films by Raman-spectroscopy. Appl. Surf. Sci. 90, 497–504 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Lee, D. G., Wang, Z. & Chandler, W. D. Autocatalysis during the reduction of tetra-n -propylammonium perruthenate by 2-propanol. J. Org. Chem. 57, 3276–3277 (1992).

    Article  CAS  Google Scholar 

  22. Ardizzone, S., Carugati, A., Lodi, G. & Trasatti, S. Surface structure of ruthenium dioxide electrodes and kinetics of chlorine evolution. J. Electrochem. Soc. 129, 1689–1693 (1982).

    Article  CAS  Google Scholar 

  23. Morris, C. A., Anderson, M. L., Stroud, R. M., Merzbacher, C. I. & Rolison, D. R. Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284, 622–624 ( 1999).

    Article  ADS  CAS  Google Scholar 

  24. Cross, J., Goswin, R., Gerlach, R. & Fricke, J. Mechanical-properties of SiO2 aerogels. J. Phys. 50, C4185–C4190 (1989).

    Google Scholar 

  25. Anderson, M. L., Stroud, R. M., Morris, C. A., Merzbacher, C. I. & Rolison, D. R. Diversifying the chemical and physical properties of advanced nanoscale materials through synthesis of composite gel and aerogel architectures. Adv. Eng. Mater. (in the press).

Download references

Acknowledgements

This work was supported by DARPA (Defense Advanced Research Projects Agency) and the US Office of Naval Research. We used neutron facilities at the National Institute of Standards & Technology supported by the US National Science Foundation. We acknowledge helpful discussions with J. J. Fontanella and R. G. Nuzzo and K. E. Swider-Lyons.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra R. Rolison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, J., Berry, A., Anderson, M. et al. Electronic connection to the interior of a mesoporous insulator with nanowires of crystalline RuO2. Nature 406, 169–172 (2000). https://doi.org/10.1038/35018040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing