Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hf–Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle

Abstract

Modern basalts have seemingly lost all ‘memory’ of the primitive Earth's mantle except for an ambiguous isotopic signal observed in some rare gases1,2. Although the Earth is expected to have reached a thermal steady state within several hundred million years (refs 3, 4) of accretion, it is not known how and when the initial chemical fractionations left over from planetary accretion (and perhaps a stage involving a magma ocean) were overshadowed by fractionations imposed by modern-style geodynamics. Because of the lack of samples older than 4 Gyr, this early dynamic regime of the Earth is poorly understood. Here we compare published Hf–Nd isotope data on supracrustals from Isua, Greenland, with similar data on lunar rocks and the SNC (martian) meteorites, and show that, about 3.8 Gyr ago, the geochemical signature of the Archaean mantle was partly inherited from the initial differentiation of the Earth. The observed features seem to indicate that the planet at that time was still losing a substantial amount of primordial heat. The survival of remnants from an early layering in the modern deep mantle may account for some unexplained seismological, thermal and geochemical characteristics of the Earth as observed today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geochemical screening of the altered Isua metavolcanic samples.
Figure 2: Evidence for strong chemical fractionation in the early Archaean mantle.

Similar content being viewed by others

References

  1. Staudacher, T. & Allègre, C. J. Terrestrial xenology. Earth Planet. Sci. Lett. 60, 389– 406 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Honda, M., McDougall, I., Patterson, D. B., Doulgeris, A. & Clague, D. A. Possible solar noble-gas component in Hawaiian basalts. Nature 349, 149– 151 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Schubert, G., Stevenson, D. & Cassen, P. Whole planet cooling and the radiogenic heat source contents of the Earth and the Moon. J. Geophys. Res. 85, 2531–2538 (1980).

    Article  ADS  Google Scholar 

  4. Christensen, U. R. Thermal evolution models for the Earth. J. Geophys. Res. 90, 2995–3007 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Shirey, S. B. & Hanson, G. N. Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts: evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior province, Ontario, Canada. Geochim. Cosmochim. Acta 50, 2631– 2651 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Chase, C. G. & Patchett, P. J. Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet. Sci. Lett. 91, 66–72 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Galer, S. J. G. & Goldstein, S. L. Early mantle differentiation and its thermal consequences. Geochim. Cosmochim. Acta 55, 227–239 ( 1991).

    Article  ADS  CAS  Google Scholar 

  8. Harper, J., C. L. & Jacobsen, S. B. Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the Earth's mantle. Nature 360, 728– 732 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Bennett, V. C., Nutman, A. P. & McCulloch, M. T. Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the Earth. Earth Planet. Sci. Lett. 119, 299–317 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533– 556 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Rosing, M. T. The theoretical effect of metasomatism on Sm-Nd isotopic systems. Geochim. Cosmochim. Acta 54, 1337– 1341 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Gruau, G., Rosing, M., Bridgwater, D. & Gill, R. C. O. Resetting of Sm-Nd systematics during metamorphism of >3.7-Ga rocks: implications for isotopic models of early Earth differentiation. Chem. Geol. 133, 225–240 ( 1996).

    Article  ADS  CAS  Google Scholar 

  13. Vervoort, J. D., Patchett, P. J., Gehrels, G. E. & Nutman, A. P. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–627 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Blichert-Toft, J., Albarède, F., Rosing, M., Frei, R. & Bridgwater, D. The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochim. Cosmochim. Acta 63, 3901–3914 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Blichert-Toft, J., Gleason, J. D., Télouk, P. & Albarède, F. The Lu-Hf geochemistry of shergottites and the evolution of the Martian mantle-crust system. Earth Planet. Sci. Lett. 173, 25 –39 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Nyquist, L. E. & Shih, C.-Y. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta 56, 2213–2234 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Unruh, D. M., Stille, P., Patchett, P. J. & Tatsumoto, M. Lu-Hf and Sm-Nd evolution in lunar mare basalts. J. Geophys. Res. 89, B459–B477 ( 1984).

    Article  Google Scholar 

  18. Beard, B. L., Taylor, L. A., Scherer, E. E., Johnson, C. M. & Snyder, G. A. The source region and melting mineralogy of high-titanium and low-titanium lunar basalts deduced from Lu-Hf isotope data. Geochim. Cosmochim. Acta 62, 525–544 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Harper, J., C. L., Nyquist, L. E., Bansal, B., Wiesmann, H. & Shih, C.-Y. Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267, 213–217 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Lee, D. -C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854– 857 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Blichert-Toft, J. & Arndt, N. T. Hf isotope compositions of komatiites. Earth Planet. Sci. Lett. 171, 439–451 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Nutman, A. P., McGregor, V. R., Friend, C. R. L., Bennett, V. C. & Kinny, P. D. The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900-3600 Ma). Precambr. Res. 78 , 1–39 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Salters, V. J. M. & White, W. M. Hf isotope constraints on mantle evolution. Chem. Geol. 145, 447 –460 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albarède, F. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79 –99 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Jacobsen, S. B. & Wasserburg, G. J. Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50 , 139–155 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Blichert-Toft, J. & Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243– 258 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Blichert-Toft, J. & Albarède, F. Short-lived chemical heterogeneities in the Archean mantle with implications for mantle convection. Science 263, 1593– 1596 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Bowring, S. A. & Housh, T. The Earth's early evolution. Science 269, 1535– 1540 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Ishii, M. & Troemp, J. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of the mantle. Science 285, 1231–1236 ( 1999).

    Article  CAS  Google Scholar 

  31. McDonough, W. F. Partial melting of subducted oceanic crust and isolation of its residual eclogitic lithology. Phil. Trans. R. Soc. Lond. A 335, 407–418 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Allègre, C. J. Comportement des systemes U-Th-Pb dans le manteau superieur et modele d'evolution de ce dernier au cours des temps geologiques. Earth Planet. Sci. Lett. 5, 261–269 ( 1969).

    Article  ADS  Google Scholar 

  33. Dalmasso, J., Barci-Funel, G. & Ardisson, G. J. Reinvestigation of the decay of the long-lived odd-odd 176Lu nucleus. Appl. Radiat. Isot. 43, 69–76 (1992).

    Article  CAS  Google Scholar 

  34. Nir-El, Y. & Lavi, N. Measurement of half-life of 176Lu. Appl. Radiat. Isot. 49, 1653 –1655 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Goldstein and W. White for comments on the manuscript, and F. Begemann for pointing out the re-determination of the 176Lu half-life. This work was supported by the Danish Lithosphere Centre, the Carlsberg Foundation, the Danish National Research Fund, the Institut National des Sciences de l'Univers (Programme Cycles Géochimiques), and the Programme National de Planétologie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Albarède.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albarède, F., Blichert-Toft, J., Vervoort, J. et al. Hf–Nd isotope evidence for a transient dynamic regime in the early terrestrial mantle. Nature 404, 488–490 (2000). https://doi.org/10.1038/35006621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing