Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Earth’s mantle composition revealed by mantle plumes

Abstract

Mantle plumes originate at depths near the core−mantle boundary (~2,800 km). As such, they provide invaluable information about the composition of the deep mantle and insight into convection, crustal formation, and crustal recycling, as well as global heat and volatile budgets. In this Review, we discuss the effectiveness and challenges of using isotopic analyses of plume-generated rocks to infer mantle composition and to constrain geodynamic models. Isotopic analyses of plume-derived ocean island basalts, including radiogenic (Sr, Nd, Pb, Hf, W, noble gas) and stable isotopes (Li, C, O, S, Fe, Tl), permit determination of mantle plume composition, which in turn generate insight into mantle plume origins, dynamics, mantle heterogeneities, early-formed mantle reservoirs, crustal recycling processes, core−mantle interactions and mantle evolution. Nevertheless, the magmatic flux, temperature, tectonic environment and compositions of mantle plumes can vary. Consequently, plumes and their melts are best evaluated along a spectrum that acknowledges their different properties, particularly mantle flux, before making interpretations about the interior of the Earth. To provide insight into specific mantle and plume processes, future work should document correlations across elemental and isotopic data sets on the same sample powder, coordinate targeting sampling strategies, and refine stable isotopic fractionation factors through experiments. Such work will benefit from collaboration across geochemical laboratories, as well as among geochemists, mineral physicists, seismologists and geodynamicists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mantle plume locations with their buoyancy flux compared with major mantle structures and locations of potential chemical reservoirs.
Fig. 2: Radiogenic and Li isotope compositions of a selection of major ocean islands.
Fig. 3: Representations of major mantle reservoir contributions to global plume buoyancy flux and of their relationships with ocean island arrays in 3D space.
Fig. 4: Isotopic systems used to detect early Earth reservoirs.
Fig. 5: Mantle convection simulations in 2D spherical annulus geometry.

Similar content being viewed by others

Data availability

Figure 2a–f and the Supplementary figures were constructed from a combined data set of precompiled files for oceanic island groups from GeoRoc and several curated data sets64,81,86. New data were downloaded from the GeoRoc geochemistry database in October 2021 and include data from Azores, Easter and Salas y Gomez Islands, Iceland, Kerguelen and St Helena. Primary GeoRoc data selection criteria were geological setting (Ocean Island), selection of ocean island chain, type of material (whole rock) and type of rock (volcanic rock). GeoRoc data from the initial search were combined with additional data downloaded from GeoRoc in July 2020 and 2021, some of which is presented in ref. 86. These data include Samoa, Cook−Austral Islands, Pitcairn−Gambier, Easter, Galápagos, Society and Mauritius (see supplementary information in ref. 86 for a full list of references). New Pitcairn and Society trace element concentration and isotope composition data from ref. 118 were added to the GeoRoc compilation, along with data from the Galápagos from ref. 64. Hawaiian-Emperor data were taken from ref. 81. The total number of samples in the compiled data set is 19,824 and most isotopic data are post-1990. The format of each of these precompiled files was standardized and imported into R, a free open-source statistical computing application for analysis and plotting. All data sets except those downloaded in October 2021 were renormalized to the same standard values to ensure comparability81. For major element and isotope plots, no filters were used on the data set to assess data quality, which varied between laboratories, instrumentation, methods and detection limits over the past 40–50 years (much of these metadata are not included in the GeoRoc database or are inconsistently included and therefore difficult to apply across such a varied data set). For trace element plots, a filter of SiO2 >55 wt% and total alkalis (Na2O+K2O) <8 wt% was applied to remove highly silica-undersaturated samples or lavas that were produced by anomalously low degrees of partial melting. This filter removes samples with heavily enriched incompatible trace element concentrations, which would skew the average results presented in the extended trace element spider diagram.

References

  1. White, W. M. Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13, 115–118 (1985).

    Article  Google Scholar 

  2. Zindler, A. & Hart, S. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

  3. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  4. Hofmann, A. W. Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. Treatise on Geochemistry 1st edn, Vol. 2 (ed. Carlson, R.) 61–102 (2003).

  5. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Article  Google Scholar 

  6. White, W. M. Probing the Earth’s deep interior through geochemistry. Geochem. Perspect. 4, 95–251 (2015).

    Article  Google Scholar 

  7. Davies, D. R. & Davies, J. J. Thermally-driven mantle plumes reconcile multiple hot-spot observations. Earth Planet. Sci. Lett. 278, 50–54 (2009).

    Article  Google Scholar 

  8. Tkalčić, H., Young, M., Muir, J. B., Davies, D. R. & Mattesini, M. Strong, multi-scale heterogeneity in Earth’s lowermost mantle. Sci. Rep. 5, 18416 (2015).

    Article  Google Scholar 

  9. Garnero, E. J. Heterogeneity of the lowermost mantle. Ann. Rev. Earth Planet. Sci. 28, 509–537 (2000).

    Article  Google Scholar 

  10. Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H.-J. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).

    Article  Google Scholar 

  11. Ritsema, J. & Lekic, V. Heterogeneity of seismic wave velocity in Earth’s mantle. Ann. Rev. Earth Planet. Sci. 48, 377–401 (2020).

    Article  Google Scholar 

  12. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–581 (2013).

    Article  Google Scholar 

  13. Duvernay, T., Davies, D. R., Mathews, C. R., Gibson, A. H. & Kramer, S. C. Linking intraplate volcanism to lithospheric structure and asthenospheric flow. Geochem. Geophys. Geosyst. 22, e2021GC009953 (2021).

    Article  Google Scholar 

  14. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  15. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  16. Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Article  Google Scholar 

  17. Jackson, M. G., Becker, T. W. & Konter, J. G. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: implications for storage in the large low shear wave velocity provinces. Geochem. Geophys. Geosyst. 19, 3496–3519 (2018).

    Article  Google Scholar 

  18. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalog of deep mantle plumes: new results from finite frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Article  Google Scholar 

  19. Boschi, L., Becker, T. W. & Steinberger, B. Mantle plumes: dynamic models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006 (2007).

    Article  Google Scholar 

  20. King, S. D. & Adam, C. Hotspot swells revisited. Phys. Earth Planet. Int. 235, 66–83 (2014).

    Article  Google Scholar 

  21. Burke, K. & Torsvik, T. H. Derivation of large igneous provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth Planet. Sci. Lett. 227, 531–538 (2004).

    Article  Google Scholar 

  22. Thorne, M. S. & Garnero, E. J. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. Solid Earth 109, 1–22 (2004).

    Article  Google Scholar 

  23. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).

    Article  Google Scholar 

  24. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  25. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    Article  Google Scholar 

  26. Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of the Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  Google Scholar 

  27. Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. Solid Earth 99, 19867–19884 (1994).

    Article  Google Scholar 

  28. Brandenburg, J. P., Hauri, E. H., van Keken, P. E. & Ballentine, C. J. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett. 276, 1–13 (2008).

    Article  Google Scholar 

  29. Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014).

    Article  Google Scholar 

  30. Williams, C., Li, M., McNamara, A. K., Garnero, E. J. & van Soest, M. C. Episodic entrainment of deep primordial mantle material into ocean island basalts. Nat. Commun. 6, 8937 (2015).

    Article  Google Scholar 

  31. Nakagawa, T. & Tackley, P. J. Influence of combined primordial layering and recycled MORB on the coupled thermal evolution of Earth’s mantle and core. Geochem. Geophys. Geosyst. 15, 619–633 (2014).

    Article  Google Scholar 

  32. Jones, T. D., Sime, N. & van Keken, P. E. Burying Earth’s primitive mantle in the slab graveyard. Geochem. Geophys. Geosystems 22, e2020GC009396 (2021).

    Article  Google Scholar 

  33. Gu, T., Li, M., McCammon, C. & Lee, K. K. M. Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nat. Geosci. 9, 723–727 (2016).

    Article  Google Scholar 

  34. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).

    Article  Google Scholar 

  35. Limare, A., Jaupart, C., Kaminski, E., Fourel, L. & Farnetani, C. G. Convection in an internally heated stratified heterogeneous reservoir. J. Fluid Mech. 870, 67–105 (2019).

    Article  Google Scholar 

  36. French, S. W. & Romanowicz, B. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Article  Google Scholar 

  37. Fourel, L. et al. The Earth’s mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources. Exp. Fluids 58, 90 (2017).

  38. McNamara, A. K. A review of large low shear velocity provinces and ultra-low velocity zones. Tectonophysics 760, 199–220 (2019).

    Article  Google Scholar 

  39. Cottaar, S. & Romanowicz, B. An unsually large ULVZ at the base of the mantle near Hawaii. Earth Planet. Sci. Lett. 355, 213–222 (2012).

    Article  Google Scholar 

  40. Knittle, E. & Jeanloz, R. Melting curve of (Mg,Fe)SiO3 perovskite to 96 GPa: evidence for a structural transition in lower mantle melts. Geophys. Res. Lett. 16, 421–424 (1989).

    Article  Google Scholar 

  41. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 1528–1530 (1996).

    Article  Google Scholar 

  42. Dobson, D. P. & Brodholt, J. P. Subducted banded iron formations as a source of ultralow-velocity zones at the core–mantle boundary. Nature 434, 371–374 (2005).

    Article  Google Scholar 

  43. Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312, 564–565 (2006).

    Article  Google Scholar 

  44. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 71, 194–211 (2020).

    Article  Google Scholar 

  45. Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core–mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).

    Article  Google Scholar 

  46. Lee, K. K. M. et al. Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth Planet. Sci. Lett. 223, 381–393 (2004).

    Article  Google Scholar 

  47. Ricolleau, A. et al. Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. J. Geophys. Res. 115, B08202 (2010).

    Google Scholar 

  48. Dorfman, S. M., Meng, Y., Prakapenka, V. B. & Duffy, T. S. Effects of Fe-enrichment on the equation of state and stability of (Mg,Fe)SiO3 perovskite. Earth Planet. Sci. Lett. 361, 249–257 (2013).

    Article  Google Scholar 

  49. Litasov, K. D. & Ohtani, E. in Advances in High-Pressure Mineralogy Vol. 421 (ed. Ohtani, E.) 115–156 (Spec. Pap. Geol. Soc. Am., 2007).

  50. Zhou, W.-Y. et al. Constraining composition and temperature variations in the mantle transition zone. Nat. Commun. 13, 1094 (2022).

  51. Creasy, N., Girard, J., Eckert, J. O. & Lee, K. K. M. The role of redox on bridgmanite crystal chemistry and calcium speciation in the lower mantle. J. Geophys. Res. Solid Earth 125, 2020JB020783 (2020).

    Article  Google Scholar 

  52. Tschauner, O. et al. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346, 1100–1102 (2014).

    Article  Google Scholar 

  53. Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–241 (2017).

    Article  Google Scholar 

  54. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Article  Google Scholar 

  55. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nat. Geosci. 4, 831–838 (2011).

    Article  Google Scholar 

  56. Nobre-Silva, I. G., Weis, D. & Scoates, J. S. Isotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean. Geochem. Geophys. Geosyst. 14, 659–676 (2013).

    Article  Google Scholar 

  57. Williamson, N. M. B., Weis, D., Scoates, J. S., Pelletier, H. & Garcia, M. O. Tracking the geochemical transition between the Kea-dominated Northwest Hawaiian Ridge and the bilateral Loa-Kea trends of the Hawaiian Islands. Geochem. Geophys. Geosyst. 20, 4354–4369 (2019).

    Article  Google Scholar 

  58. Kerr, R. & Mériaux, C. Structure and dynamics of sheared mantle plumes. Geochem. Geophys. Geosyst. 5, 1–42 (2004).

    Article  Google Scholar 

  59. Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 282, 314–322 (2009).

    Article  Google Scholar 

  60. Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nat. Geosci. 4, 874–878 (2011).

    Article  Google Scholar 

  61. Chauvel, C. et al. The size of plume heterogeneities constrained by Marquesas isotopic stripes. Geochem. Geophys. Geosyst. 13, Q07005 (2012).

    Article  Google Scholar 

  62. Payne, J. A., Jackson, M. G. & Hall, P. S. Parallel volcano trends and geochemical asymmetry of the Society hotspot track. Geology 41, 19–22 (2013).

    Article  Google Scholar 

  63. Harpp, K. S., Hall, P. S. & Jackson, M. G. in The Galápagos: A Natural Laboratory for the Earth Sciences (eds Harpp, K. S., Mittelstaedt, E., d’Ozouville, N. & Graham, D. W.) 27–40 (AGU, Geophys. Monog. Series 204, 2014).

  64. Harpp, K. S. & Weis, D. Insights into the origins and compositions of mantle plumes: a comparison of Galápagos and Hawai‘i. Geochem. Geophys. Geosyst. 21, e2019GC008887 (2020).

    Article  Google Scholar 

  65. Rohde, J. et al. 70 Ma chemical zonation of the Tristan–Gough hotspot track. Geology 41, 335–338 (2013).

    Article  Google Scholar 

  66. Harrison, L. N., Weis, D. & Garcia, M. O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics. Earth Planet. Sci. Lett. 463, 298–309 (2017).

    Article  Google Scholar 

  67. Jones, T. D. et al. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Nature 545, 472–476 (2017).

    Article  Google Scholar 

  68. Schilling, J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352, 397–403 (1991).

    Article  Google Scholar 

  69. Sleep, N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. Solid Earth 95, 6715–6736 (1990).

    Article  Google Scholar 

  70. White, R. S. Melt production rates in mantle plumes. Phil. Trans. R. Soc. Lond. 342, 137–153 (1993).

    Article  Google Scholar 

  71. Kingsley, R. H. & Schilling, J.-G. Plume–ridge interaction in the Easter–Salas y Gomez seamount chain — Easter Microplate system: Pb isotope evidence. J. Geophys. Res. 103, 24159 –24177 (1998).

    Google Scholar 

  72. Kingsley, R. H., Blichert-Toft, J., Fontignie, D. & Schilling, J.-G. Hafnium, neodymium, and strontium isotope and parent–daughter element systematics in basalts from the plume–ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochem. Geophys. Geosyst. 8, Q04005 (2007).

    Article  Google Scholar 

  73. Jackson, M. G. & Dasgupta, R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175–186 (2008).

    Article  Google Scholar 

  74. Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).

    Article  Google Scholar 

  75. Jackson, M. G. et al. Contrasting old and young volcanism from Aitutaki, Cook Islands: implications for a hotspot origin. J. Petrol. 61, egaa037 (2020).

    Article  Google Scholar 

  76. Duncan, R. A., McCulloch, M. T., Barsczus, H. G. & Nelson, D. R. Plume versus lithospheric sources for melts at Ua Pou, Marquesas Islands. Nature 322, 534–538 (1986).

    Article  Google Scholar 

  77. Haase, K. M., Beier, C. & Kemner, F. A comparison of the magmatic evolution of Pacific intraplate volcanoes: constraints on melting in mantle plumes. Front. Earth Sci. 6, 242 (2019).

    Article  Google Scholar 

  78. Harrison, L. N. & Weis, D. The size and emergence of geochemical heterogeneities in the Hawaiian mantle plume constrained by Sr-Nd-Hf isotopic variation over ~47 million years. Geochem. Geophys. Geosyst. 19, 1–20 (2018).

    Article  Google Scholar 

  79. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hotspot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Article  Google Scholar 

  80. Wessel, P. Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux. Geophys. J. Int. 204, 932–947 (2016).

    Article  Google Scholar 

  81. Weis, D., Harrison, L., McMillan, R. & Williamson, N. W. B. Fine-scale structure of Earth’s deep mantle resolved through statistical analysis of Hawaiian basalt geochemistry. Geochem. Geophys. Geosyst. 21, e2020GC009292 (2020).

    Article  Google Scholar 

  82. Wessel, P. & Kroenke, L. Observations of geometry and ages constrain relative motion of Hawaii and Louisville plumes. Earth Planet. Sci. Lett. 284, 467–472 (2009).

    Article  Google Scholar 

  83. Farnetani, C. G., Hofmann, A. W. & Class, C. How double volcanic chains sample geochemical anomalies from the lowermost mantle. Earth Planet. Sci. Lett. 359360, 240–247 (2012).

    Article  Google Scholar 

  84. White, W. M., McBirney, A. R. & Duncan, R. A. Petrology and geochemistry of the Galápagos islands: portrait of a pathological mantle plume. J. Geophys. Res. Solid Earth 98, 19533–19563 (1993).

    Article  Google Scholar 

  85. Harpp, K. S. & White, W. M. Tracing a mantle plume: isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosyst. 2, 1–46 (2001).

    Article  Google Scholar 

  86. Harrison, L. N., Weis, D. & Garcia, M. O. The multiple depleted mantle components in the Hawaiian-Emperor chain. Chem. Geol. 532, 1–22 (2020).

    Article  Google Scholar 

  87. Weis, D. & Frey, F. A. Submarine basalts of the Northern Kerguelen Plateau: interaction between the Kerguelen plume and the Southeast Indian Ridge revealed at ODP Site 1140. J. Petrol. 43, 1287–1309 (2002).

    Article  Google Scholar 

  88. Regelous, M., Hofmann, A. W., Abouchami, W. & Galer, S. J. G. Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J. Petrol. 44, 113–140 (2003).

    Article  Google Scholar 

  89. Harpp, K. S. & Geist, D. J. The evolution of Galápagos volcanoes: an alternative perspective. Front. Earth Sci. 6, 50 (2018).

    Article  Google Scholar 

  90. Ito, G., Lin, J. & Gable, C. W. Dynamics of mantle flow and melting at a ridge-centered hotspot: iceland and the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 144, 53–74 (1996).

    Article  Google Scholar 

  91. Konter, J. G. & Jackson, M. G. Large volumes of rejuvenated volcanism in Samoa: evidence supporting tectonic influence on late-stage volcanism. Geochem. Geophys. Geosyst. 13, Q0AM04 (2012).

    Article  Google Scholar 

  92. Jackson, M. G. et al. Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014).

    Article  Google Scholar 

  93. Kerr, B. C., Scholl, D. W. & Klemperer, S. L. Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor seamount chain: post-hot-spot shield-building volcanism and deposition of the Meiji drift. Geochem. Geophys. Geosyst. 6, Q07L10 (2005).

    Article  Google Scholar 

  94. Saal, A. E., Hart, S. R., Shimizu, N., Hauri, E. H. & Layne, G. D. Pb isotopic variability in melt inclusions from the EMI–EMII–HIMU mantle end-members and the role of the oceanic lithosphere. Earth Planet. Sci. Lett. 240, 605–620 (2005).

    Article  Google Scholar 

  95. Stracke, A., Genske, F., Berndt, J. & Koornneef, J. M. Ubiquitous ultra-depleted domains in Earth’s mantle. Nat. Geosci. 12, 851–855 (2019).

    Article  Google Scholar 

  96. Rudge, J. F., Maclennan, J. & Stracke, A. The geochemical consequences of mixing melts from a heterogeneous mantle. Geochim. Cosmochim. Acta 114, 112–143 (2013).

    Article  Google Scholar 

  97. White, W. M. Oceanic island basalts and mantle plumes: the geochemical perspective. Ann. Rev. Earth Planet. Sci. 38, 133–160 (2010).

    Article  Google Scholar 

  98. Hofmann, A. W., Jochum, K., Seufert, M. & White, W. M. Nb and Pb in oceanic basalts — new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45 (1986).

    Article  Google Scholar 

  99. Newsom, H. E., White, W. M., Jochum, K. P. & Hofmann, A. W. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth Planet. Sci. Lett. 80, 299–313 (1986).

    Article  Google Scholar 

  100. Willbold, M. & Stracke, A. Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).

    Article  Google Scholar 

  101. Gast, P. W. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta 32, 1057–1086 (1968).

    Article  Google Scholar 

  102. Putirka, K., Perfit, M., Ryerson, F. J. & Jackson, M. G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 241, 177–206 (2007).

    Article  Google Scholar 

  103. Jackson, M. G., Weis, D. & Huang, S. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochem. Geophys. Geosyst. 13, 919 Q09009 (2012).

    Article  Google Scholar 

  104. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992).

    Article  Google Scholar 

  105. Zindler, A., Jagoutz, E. & Goldstein, S. Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective. Nature 298, 519–523 (1982).

    Article  Google Scholar 

  106. Stracke, A., Hofmann, A. W. & Hart, S. R. FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6, Q05007 (2005).

    Article  Google Scholar 

  107. Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 (1996).

    Article  Google Scholar 

  108. Farley, K. A., Natland, J. H. & Craig, H. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111, 183–199 (1992).

    Article  Google Scholar 

  109. Chauvel, C., Hofmann, A. W. & Vidal, P. HIMU−EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992).

    Article  Google Scholar 

  110. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  Google Scholar 

  111. Chauvel, C., McDonough, W., Guille, G., Maury, R. & Duncan, R. Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem. Geol. 139, 125–143 (1997).

    Article  Google Scholar 

  112. Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383 (2005).

    Article  Google Scholar 

  113. Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).

    Article  Google Scholar 

  114. Weiss, Y., Class, C., Goldstein, S. L. & Hanyu, T. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Nature 537, 666–670 (2016).

    Article  Google Scholar 

  115. Homrighausen, S. et al. Global distribution of the HIMU end-member: formation through Archean plume-lid tectonics. Earth Sci. Rev. 182, 85–101 (2018).

    Article  Google Scholar 

  116. Castillo, P. R. The recycling of marine carbonates and sources of HIMU and FOZO ocean island basalts. Lithos 216217, 254–263 (2015).

    Article  Google Scholar 

  117. Eisele, J. et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197–212 (2002).

    Article  Google Scholar 

  118. Cordier, C., Delavault, H. & Chauvel, C. Geochemistry of the Society and Pitcairn-Gambier mantle plumes: what they share and do not share. Geochim. Cosmochim. Acta 306, 362–384 (2021).

    Article  Google Scholar 

  119. Boyet, M. et al. New constraints on the origin of the EM-1 component revealed by the measurement of the La-Ce isotope systematics in Gough Island lavas. Geochem. Geophys. Geosyst. 20, 2484–2498 (2019).

    Article  Google Scholar 

  120. Weis, D., Bassias, Y., Gautier, I. & Mennessier, J.-P. Kerguelen Plateau (South Indian Ocean): isotopic study of MD48 dredge basalts: Kerguelen type signature. Geochim. Cosmochim. Acta 53, 2125–2131 (1989).

    Article  Google Scholar 

  121. Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999).

    Article  Google Scholar 

  122. Garapić, G. et al. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: implications for the origin of EM-1 (enriched mantle 1). Lithos 228, 1–11 (2015).

    Article  Google Scholar 

  123. Delavault, H., Chauvel, C., Thomassot, E., Devey, C. W. & Dazas, B. Sulfur and lead isotopic evidence of relic Archean sediments in the Pitcairn mantle plume. Proc. Natl Acad. Sci. USA. 113, 12952–12956 (2016).

    Article  Google Scholar 

  124. Wang, X.-J. et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc. Natl Acad. Sci. USA 115, 86828687 (2018).

    Google Scholar 

  125. Weaver, B. L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381–397 (1991).

    Article  Google Scholar 

  126. White, W. M. & Duncan, R. A. Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. in Earth Processes Reading the Isotopic Code (eds Basu, A. & Hart, S.) 183–206 (AGU, 1996).

  127. Jackson, M. G., Kurz, M. D., Hart, S. R. & Workman, R. K. New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high He-3/He-4 mantle. Earth Planet. Sci. Lett. 264, 360–374 (2007).

    Article  Google Scholar 

  128. Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochem. Geophys. Geosyst. 5, Q04008 (2004).

    Article  Google Scholar 

  129. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005).

    Article  Google Scholar 

  130. Gonnermann, H. M. & Mukhopadhyay, S. Preserving noble gases in a convecting mantle. Nature 459, 560–563 (2009).

    Article  Google Scholar 

  131. Hofmann, A. W., Class, C. & Goldstein, S. L. Size and composition of the MORB+OIB mantle reservoir. Geochem. Geophys. Geosyst. 23, e2022GC010339 (2022).

    Article  Google Scholar 

  132. Stracke, A., Bourdon, B. & McKenzie, D. Melt extraction in the Earth’s mantle: constraints from U-Th-Pa-Ra studies in oceanic basalts. Earth Planet. Sci. Lett. 244, 97–112 (2006).

    Article  Google Scholar 

  133. Parai, R., Mukhopadhyay, S., Tucker, J. M. & Pető, M. K. The emerging portrait of an ancient, heterogeneous and continuously evolving mantle plume source. Lithos 346, 105153 (2019).

    Article  Google Scholar 

  134. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q0500 (2004).

    Article  Google Scholar 

  135. Genske, F., Stracke, A., Berndt, J. & Klemme, S. Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions. Chem. Geol. 524, 1–10 (2019).

    Article  Google Scholar 

  136. Frey, F. A., Huang, S., Blichert-Toft, J., Regelous, M. & Boyet, M. Origin of depleted components in basalt related to the Hawaiian hot spot: evidence from isotopic and incompatible element ratios. Geochem. Geophys. Geosyst. 6, Q02L07 (2005).

    Article  Google Scholar 

  137. Bizimis, M., Sen, G., Salters, V. J. M. & Keshav, S. Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: evidence for a depleted component in Hawaiian volcanism. Geochim. Cosmochim. Acta 69, 2629–2646 (2005).

    Article  Google Scholar 

  138. DeFelice, C., Mallick, S., Saal, A. E. & Huang, S. An isotopically depleted lower mantle component is intrinsic to the Hawaiian mantle plume. Nat. Geosci. 12, 487–492 (2019).

    Article  Google Scholar 

  139. White, W. M., Schilling, J.-G. & Hart, S. R. Evidence for the Azores mantle plume from strontium isotope geochemistry of the Central North Atlantic. Nature 263, 659–663 (1976).

    Article  Google Scholar 

  140. Schilling, J.-G., Kingsley, R. H. & Devine, J. D. Galápagos hot spot-spreading center system: 1. Spatial petrological and geochemical variations (83°W–101°W). J. Geophys. Res. Solid Earth 87, 5593–5610 (1982).

    Article  Google Scholar 

  141. Humphris, S. E., Thompson, G., Schilling, J.-G. & Kingsley, R. H. Petrological and geochemical variations along the Mid-Atlantic Ridge between 46°S and 32°S: influence of the Tristan da Cunha mantle plume. Geochim. Cosmochim. Acta 49, 1445–1464 (1985).

    Article  Google Scholar 

  142. Moreira, M., Doucelance, R., Kurz, M. D., Dupré, B. & Allègre, C. J. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169, 89–205 (1999).

    Article  Google Scholar 

  143. Stracke, A., Willig, M., Genske, F., Béguelin, P. & Todd, E. Chemical geodynamics insights from a machine learning approach. Geochem. Geophys. Geosyst. 23, e2022GC010606 (2022).

    Article  Google Scholar 

  144. Allègre, C. J. Chemical geodynamics. Tectonophysics 81, 109–132 (1982).

    Article  Google Scholar 

  145. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

    Article  Google Scholar 

  146. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

  147. Morris, J., Valentine, R. & Harrison, T. 10Be imaging of sediment accretion and subduction along the northeast Japan and Costa Rica convergent margins. Geology 30, 59–62 (2002).

    Article  Google Scholar 

  148. Turner, S., Bourdon, B. & Gill, J. Insights into magma genesis at convergent margins from U-series isotopes. Rev. Mineral. Geochem. 52, 255–315 (2003).

    Article  Google Scholar 

  149. Deschamps, F. et al. In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem. Geol. 269, 262–277 (2010).

    Article  Google Scholar 

  150. Tang, M., Rudnick, R. L. & Chauvel, C. Sedimentary input to the source of Lesser Antilles lavas: a Li perspective. Geochim. Cosmochim. Acta 144, 43–58 (2014).

    Article  Google Scholar 

  151. Smith, E. M. et al. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Sci. Adv. 7, eabe9773 (2021).

    Article  Google Scholar 

  152. Porter, K. A. & White, W. M. Deep mantle subduction flux. Geochem. Geophys. Geosyst. 10, Q12016 (2009).

    Article  Google Scholar 

  153. Ryan, J. G. & Chauvel, C. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 479–508 (Elsevier, 2014).

  154. Turner, S. J. & Langmuir, C. H. Sediment and ocean crust both melt at subduction zones. Earth Planet. Sci. Lett. 584, 117424 (2022).

    Article  Google Scholar 

  155. Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat. Geosci. 1, 64–67 (2008).

    Article  Google Scholar 

  156. Rudnick, R. L. & Gao, S. Composition of the continental crust. in Treatise on Geochemistry (eds Heinrich, D. H. & Karl, K. T.) 1–64 (Pergamon, 2003).

  157. Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330331, 274–299 (2012).

    Article  Google Scholar 

  158. Vervoort, J. D., Patchett, P. J., Blichert-Toft, J. & Albaréde, F. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79–99 (1999).

    Article  Google Scholar 

  159. Holland, G. & Ballentine, C. J. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441, 186–191 (2006).

    Article  Google Scholar 

  160. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  Google Scholar 

  161. Tucker, J. M., Mukhopadhyay, S. & Schilling, J.-G. The heavy noble gas composition of the depleted MORB mantle (DMM) and its implications for the preservation of heterogeneities in the mantle. Earth Planet. Sci. Lett. 355356, 244–254 (2012).

    Article  Google Scholar 

  162. Parai, R., Mukhopadhyay, S. & Standish, J. J. Heterogeneous upper mantle Ne, Ar and Xe isotopic compositions and a possible Dupal noble gas signature recorded in basalts from the Southwest Indian Ridge. Earth Planet. Sci. Lett. 359, 227–239 (2012).

    Article  Google Scholar 

  163. Péron, S., Mukhopadhyay, S., Kurz, M. D. & Graham, D. W. Deep-mantle krypton reveals Earth’s early accretion of carbonaceous matter. Nature 600, 462–467 (2021).

    Article  Google Scholar 

  164. Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, 1–9 (2022).

    Article  Google Scholar 

  165. Parai, R. & Mukhopadhyay, S. Xenon isotopic constraints on the history of volatile recycling into the mantle. Nature 560, 223–227 (2018).

    Article  Google Scholar 

  166. Péron, S. & Moreira, M. Onset of volatile recycling into the mantle determined by xenon anomalies. Geochem. Perspect. Lett. 9, 1–25 (2018).

    Google Scholar 

  167. Caffee, M. W. et al. Primordial noble gases from Earth’s mantle: identification of a primitive volatile component. Science 285, 2115–2118 (1999).

    Article  Google Scholar 

  168. Avice, G. & Marty, B. Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. 216, 1–18 (2020).

    Article  Google Scholar 

  169. Pető, M. K., Mukhopadhyay, S. & Kelley, K. A. Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369, 13–23 (2013).

    Article  Google Scholar 

  170. Tomascak, P. B. Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. Rev. Mineral. Geochem. 55, 153–195 (2004).

    Article  Google Scholar 

  171. Penniston-Dorland, S., Liu, X.-M. & Rudnick, R. L. Lithium isotope geochemistry. Rev. Mineral. Geochem. 82, 165–217 (2017).

    Article  Google Scholar 

  172. Bouman, C., Elliott, T. & Vroon, P. Z. Lithium inputs to subduction zones. Chem. Geol. 212, 59–79 (2004).

    Article  Google Scholar 

  173. Chan, L.-H. & Frey, F. A. Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochem. Geophys. Geosyst. 4, 8707 (2003).

    Article  Google Scholar 

  174. Vlastélic, I., Koga, K., Chauvel, C., Jaques, G. & Télouk, P. Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain. Earth Planet. Sci. Lett. 286, 456–466 (2009).

    Article  Google Scholar 

  175. Krienitz, M. S. et al. Lithium isotope variations in ocean island basalts — implications for the development of mantle heterogeneities. J. Petrol. 53, 2333–2347 (2012).

    Article  Google Scholar 

  176. Harrison, L. N., Weis, D., Hanano, D. & Barnes, E. Lithium isotopic signature of Hawaiian basalts. in Hawaiian Volcanoes: From Source to Surface (eds Carey, R., Cayol, V., Poland, P. & Weis, D.), Geophys. Monog. Ser. 208, 74–104 (AGU, 2015).

  177. Marschall, H. R. et al. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 207, 102–138 (2017).

    Article  Google Scholar 

  178. Rehkämper, M. et al. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197, 65–81 (2002).

    Article  Google Scholar 

  179. Nielsen, S. G. et al. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 251, 120–133 (2006).

    Article  Google Scholar 

  180. Nielsen, S. G., Rehkämper, M. & Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82, 759–798 (2017).

    Article  Google Scholar 

  181. Brett, A. et al. Thallium elemental and isotopic systematics in ocean island lavas. Geochim. Cosmochim. Acta 301, 187–210 (2021).

    Article  Google Scholar 

  182. Nielsen, S. G., Rehkämper, M., Norman, M. D., Halliday, A. N. & Harrison, D. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439, 314–317 (2006).

    Article  Google Scholar 

  183. Williamson, N. M. B., Weis, D. & Prytulak, J. Thallium isotopic compositions in Hawaiian lavas: evidence for recycled materials on the Kea side of the Hawaiian mantle plume. Geochem. Geophys. Geosyst. 22, e2021GC009765 (2021).

    Article  Google Scholar 

  184. Blusztajn, J. et al. Thallium isotope systematics in volcanic rocks from St Helena — constraints on the origin of the HIMU reservoir. Chem. Geol. 476, 292–301 (2018).

    Article  Google Scholar 

  185. Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007).

    Article  Google Scholar 

  186. Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013).

    Article  Google Scholar 

  187. Dottin, J. W. III, Labidi, J., Jackson, M. G., Woodhead, J. & Farquhar, J. Isotopic evidence for multiple recycled sulfur reservoirs in the Mangaia mantle plume. Geochem. Geophys. Geosyst. 21, e2020GC009081 (2020).

    Article  Google Scholar 

  188. Elderfield, H. The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. London. Ser. A 325, 105–126 (1988).

    Article  Google Scholar 

  189. Israel, C. et al. Formation of the Ce-Nd mantle array: crustal extraction vs. recycling by subduction. Earth Planet. Sci. Lett. 530, 115941 (2020).

    Article  Google Scholar 

  190. Boyet, M., Garcon, M., Arndt, N., Carlson, R. W. & Konc, Z. Residual liquid from deep magma ocean crystallization in the source of komatiites from the ICDP drill core in the Barberton Greenstone Belt. Geochim. Cosmochim. Acta 304, 141–159 (2021).

    Article  Google Scholar 

  191. Cottaar, S., Martin, C., Li, Z. & Parai, R. The root to the Galápagos mantle plume on the core–mantle boundary. Seismica 1, 1–12 (2022).

    Article  Google Scholar 

  192. Hernlund, J. W. & McNamara, A. K. in Treatise on Geophysics (ed. Schubert, G.) Vol. 7, 461–519 (Elsevier, 2015).

  193. Touboul, M. & Walker, R. J. High precision tungsten isotope measurement by thermal ionization mass spectrometry. Int. J. Mass Spectrom. 309, 109–117 (2012).

    Article  Google Scholar 

  194. Horan, M. et al. Tracking Hadean processes in modern basalts with 142-neodymium. Earth Planet. Sci. Lett. 484, 184–191 (2018).

    Article  Google Scholar 

  195. Jacobsen, S. B. & Wasserburg, G. J. The mean age of mantle and crustal reservoirs. J. Geophys. Res. Solid Earth 84, 7411–7427 (1979).

    Article  Google Scholar 

  196. O’Nions, R. K., Evensen, N. M. & Hamilton, P. J. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. Solid Earth 84, 6091–6101 (1979).

    Article  Google Scholar 

  197. DePaolo, D. J. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta 44, 1185–1196 (1980).

    Article  Google Scholar 

  198. Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).

    Article  Google Scholar 

  199. Johnston, S. et al. Nd isotope variation between the Earth–Moon system and enstatite chondrites. Nature 611, 501–506 (2022).

    Article  Google Scholar 

  200. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  201. Shahar, A., Elardo, S. M. & Macris, C. A. Equilibrium fractionation of non-traditional stable isotopes: an experimental approach. Rev. Min. Geochem. 82, 65–84 (2017).

    Article  Google Scholar 

  202. Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous Nd-142/Nd-144 ratios in the Reunion hotspot source. Nature 555, 89–93 (2018).

    Article  Google Scholar 

  203. Faure, P. et al. Determination of the refractory enrichment factor of the bulk silicate Earth from metal-silicate experiments on rare earth elements. Earth Planet. Sci. Lett. 554, 116644 (2021).

    Article  Google Scholar 

  204. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  Google Scholar 

  205. Mundl-Petermeier, A. et al. Temporal evolution of primordial tungsten-182 and He-3/He-4 signatures in the Iceland mantle plume. Chem. Geol. 525, 245–259 (2019).

    Article  Google Scholar 

  206. Peters, B. J., Mundl-Petermeier, A., Carlson, R. W., Walker, R. J. & Day, J. M. D. Combined lithophile–siderophile isotopic constraints on Hadean processes preserved in ocean island basalt sources. Geochem. Geophys. Geosyst. 22, e2020GC009479 (2021).

    Article  Google Scholar 

  207. Rizo, H. et al. 182W evidence for core–mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Article  Google Scholar 

  208. Moreira, M., Kunz, J. & Allègre, C. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998).

    Article  Google Scholar 

  209. Parai, R. & Mukhopadhyay, S. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16, 719–735 (2015).

    Article  Google Scholar 

  210. Parai, R. & Mukhopadhyay, S. Heavy noble gas signatures of the North Atlantic Popping Rock 2 Pi D43: implications for mantle noble gas heterogeneity. Geochim. Cosmochim. Acta 294, 89–105 (2021).

    Article  Google Scholar 

  211. Caracausi, A., Avice, G., Burnard, P. G., Furi, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).

    Article  Google Scholar 

  212. Bekaert, D. V., Broadley, M. W., Caracausi, A. & Marty, B. Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).

    Article  Google Scholar 

  213. Wetherill, G. W. Radiometric chronology of the early solar system. Ann. Rev. Nucl. Sci. 25, 283–328 (1975).

    Article  Google Scholar 

  214. Kleine, T., Münker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002).

    Article  Google Scholar 

  215. Yin, Y., Zhang, Q., Zhang, Y., Zhai, S. & Liu, Y. Electrical and thermal conductivity of Earth’s core and its thermal evolution — a review. Acta Geochim. 41, 665–688 (2022).

    Article  Google Scholar 

  216. Walker, R. J. Siderophile element constraints on the origin of the Moon. Philos. Trans. Math. Phys. Eng. Sci. 372, 20130258 (2014).

    Google Scholar 

  217. McDonough, W. F. in Geophysical Monograph 217. Deep Earth: Physics and Chemistry of the Lower Mantle and Core (eds Terasaki, H. & Fischer, R. A.) 145–159 (John Wiley & Sons, Inc., AGU, 2016).

  218. Badro, J., Brodholt, J. P., Pieta, H., Siebert, J. & Ryerso, F. J. Core formation and core composition from coupled geochemical and geophysical constraints. Proc. Natl Acad. Sci. USA 112, 12310–12314 (2015).

    Article  Google Scholar 

  219. Shahar, A. et al. Pressure-dependent isotopic composition of iron alloys. Science 352, 580–582 (2016).

    Article  Google Scholar 

  220. Shahar, A. et al. High-temperature Si isotope fractionation between iron metal and silicate. Geochim. Cosmochim. Acta 75, 7688–7697 (2011).

    Article  Google Scholar 

  221. Georg, R. B., Reynolds, B. C., West, A. J., Burton, K. W. & Halliday, A. N. Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet. Sci. Lett. 261, 476–490 (2007).

    Article  Google Scholar 

  222. Hin, R. C. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017).

    Article  Google Scholar 

  223. Elardo, S. M., Shahar, A., Mock, T. D. & Sio, C. K. The effect of core composition on iron isotope fractionation between planetary cores and mantles. Earth Planet. Sci. Lett. 513, 124–134 (2019).

    Article  Google Scholar 

  224. Tronnes, R. G. et al. Core formation, mantle differentiation, and core–mantle interaction within Earth and terrestrial planets. Tectonophysics 760, 165–198 (2019).

    Article  Google Scholar 

  225. Hayden, L. A. & Watson, E. B. A diffusion mechanism for core–mantle interaction. Nature 450, 709–711 (2007).

    Article  Google Scholar 

  226. Humayun, M., Qui, L. & Norman, M. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004).

    Article  Google Scholar 

  227. Brandon, A. D., Walker, R. J., Morgan, J. W., Norman, M. D. & Prichard, H. M. Coupled 186Os and 187Os evidence for core–mantle interaction. Science 280, 1570–1573 (1998).

    Article  Google Scholar 

  228. Brandon, A. D. et al. Os-186-Os-187 systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet. Sci. Lett. 206, 411–426 (2003).

    Article  Google Scholar 

  229. Brandon, A. D., Humayun, M., Puchtel, I. S., Leya, I. & Zolensky, M. Osmium isotope evidence for an s-process carrier in primitive chondrites. Science 309, 1233–1236 (2005).

    Article  Google Scholar 

  230. Ireland, T. J., Walker, R. J. & Brandon, A. D. 186Os–187Os systematics of Hawaiian picrites revisited: new insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 75, 4456–4475 (2011).

    Article  Google Scholar 

  231. Touboul, M., Puchtel, I. S. & Walker, R. J. W-182 evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    Article  Google Scholar 

  232. Trinquier, A., Touboul, M. & Walker, R. J. High-precision tungsten isotopic analysis by multicollection negative thermal ionization mass spectrometry based on simultaneous measurement of W and 18O/16O isotope ratios for accurate fractionation correction. Anal. Chem. 88, 1542–1546 (2016).

    Article  Google Scholar 

  233. Armytage, R. M. G., Jephcoat, A. P., Bouhifd, M. A. & Porcelli, D. Metal-silicate partitioning of iodine at high pressures and temperatures: implications for the Earth’s core and (129)*Xe budgets. Earth Planet. Sci. Lett. 373, 140–149 (2013).

    Article  Google Scholar 

  234. Porcelli, D. & Halliday, A. The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001).

    Article  Google Scholar 

  235. Bouhifd, M. A., Jephcoat, A. P., Porcelli, D., Kelley, S. P. & Marty, B. Potential of Earth’s core as a reservoir for noble gases: case for helium and neon. Geochem. Perspect. Lett. 15, 15–18 (2020).

    Article  Google Scholar 

  236. Roth, A. S. G. et al. The primordial He budget of the Earth set by percolative core formation in planetesimals. Geochem. Perspect. Lett. 9, 26–31 (2019).

    Article  Google Scholar 

  237. Olson, P. L. & Sharp, Z. D. Primordial helium-3 exchange between Earth’s core and mantle. Geochem. Geophys. Geosyst. 23, e2021GC009985 (2022).

    Article  Google Scholar 

  238. Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA. 117, 30993–31001 (2020).

    Article  Google Scholar 

  239. Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowitcz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    Article  Google Scholar 

  240. Kim, Y. H. et al. Structural transitions in MgSiO3 glasses and melts at the core–mantle boundary observed via inelastic X-ray scattering. Geophys. Res. Lett. 46, 13756–13764 (2019).

    Article  Google Scholar 

  241. Brown, S. M., Tanton, L. T. E. & Walker, R. J. Effects of magma ocean crystallization and overturn on the development of 142Nd and 182W isotopic heterogeneities in the primordial mantle. Earth Planet. Sci. Lett. 408, 319–330 (2014).

    Article  Google Scholar 

  242. Puchtel, I. S., Blichert-Toft, J., Touboul, M., Horan, M. F. & Walker, R. J. The coupled W-182–Nd-142 record of early terrestrial mantle differentiation. Geochem. Geophys. Geosyst. 17, 2168–2193 (2016).

    Article  Google Scholar 

  243. Lee, C. T. A. et al. Upside-down differentiation and generation of a primordial lower mantle. Nature 463, 930–933 (2010).

    Article  Google Scholar 

  244. Gülcher, A. J. P., Gebhardt, D. J., Ballmer, M. D. & Tackley, P. J. Variable dynamic styles of primordial heterogeneity preservation in the Earth’s lower mantle. Earth Planet. Sci. Lett. 536, 116160 (2020).

    Article  Google Scholar 

  245. Morino, P., Caro, G., Reisberg, L. & Schumacher, A. Chemical stratification in the post-magma ocean Earth inferred from coupled 146,147Sm−142,143Nd systematics in ultramafic rocks of the Saglek block (3.25−3.9 Ga; northern Labrador, Canada). Earth Planet. Sci. Lett. 463, 136–150 (2017).

    Article  Google Scholar 

  246. Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).

    Article  Google Scholar 

  247. Lock, S. J., Bermingham, K. R., Parai, R. & Boyet, M. Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 109 (2020).

    Article  Google Scholar 

  248. Brandenburg, J. P. & van Keken, P. E. Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res. Solid Earth 112, B06403 (2007).

    Article  Google Scholar 

  249. Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem. Geophys. Geosyst. 10, Q03004 (2009).

    Article  Google Scholar 

  250. Whitehead, J. A. & Luther, D. S. Dynamics of laboratory diapir and plume models. J. Geophys. Res. Solid Earth 80, 705–717 (1975).

    Article  Google Scholar 

  251. Korenaga, J. Firm mantle plumes and the nature of the core–mantle boundary region. Earth Planet. Sci. Lett. 232, 29–37 (2005).

    Article  Google Scholar 

  252. Olson, P., Schubert, G. & Anderson, C. Structure of axisymmetric mantle plumes. J. Geophys. Res. Solid Earth 98, 6829–6844 (1993).

    Article  Google Scholar 

  253. Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008).

    Article  Google Scholar 

  254. Tackley, P. J. in The CoreMantle Boundary Region (ed. Gurnis, M.), Geophys. Monogr. Ser. 28, 231–253 (AGU, 1998).

  255. Hirose, K., Fei, Y., Ma, Y. & Mao, H.-K. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397, 53–56 (1999).

    Article  Google Scholar 

  256. Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349350, 198–208 (2012).

    Article  Google Scholar 

  257. Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).

    Article  Google Scholar 

  258. Ammann, M. W., Brodholt, J. P., Wookey, J. & Dobson, D. P. First-principles constraints on diffusion in lower-mantle minerals and a weak D” layer. Nature 465, 462–465 (2010).

    Article  Google Scholar 

  259. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  Google Scholar 

  260. Karato, S. Rheology of the deep upper mantle and its implications for the preservation of the continental roots: a review. Tectonophysics 481, 82–98 (2010).

    Article  Google Scholar 

  261. Gülcher, A. J. P., Ballmer, M. D. & Tackley, P. Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth’s lower mantle. Solid Earth 12, 2087–2107 (2021).

    Article  Google Scholar 

  262. Farnetani, C. G., Hofmann, A. W., Duvernay, T. & Limare, A. Dynamics of rheological heterogeneities in mantle plumes. Earth Planet. Sci. Lett. 499, 74–82 (2018).

    Article  Google Scholar 

  263. Jones, T. D., Davies, D. R., Campbell, I. H., Wilson, C. R. & Kramer, S. C. Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? Earth Planet. Sci. Lett. 434, 10–17 (2016).

    Article  Google Scholar 

  264. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  265. Putirka, K. Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36, 83–286 (2008).

    Article  Google Scholar 

  266. Garcia, M. O., Tree, J. P., Wessel, P. & Smith, J. R. Puhahonu: Earth’s biggest and hottest shield volcano. Earth Planet. Sci. Lett. 542, 116296 (2020).

    Article  Google Scholar 

  267. Garcia, M. O. et al. in The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces (eds Neal, C. R., Sager, W. W., Sano, T. & Erba, E.) 1–25 (Spec. Pap. Geol. Soc. Am., 511, 2015).

  268. Bao, X., Lithgow-Bertelloni, C. R., Jackson, M. G. & Romanowicz, B. On the relative temperatures of Earth’s volcanic hotspots and mid-ocean ridges. Science 375, 57–61 (2022).

    Article  Google Scholar 

  269. Hegner, E. & Tatsumoto, M. Pb, Sr, and Nd isotopes in seamount basalts from the Juan de Fuca Ridge and Kodiak-Bowie Seamount chain northeast Pacific. J. Geophys. Res. Solid Earth 94, 17839–17846 (1989).

    Article  Google Scholar 

  270. Chadwick, J., Keller, R., Kamenov, G., Yogodzinski, G. & Lupton, J. The Cobb hot spot: HIMU-DMM mixing and melting controlled by a progressively thinning lithospheric lid. Geochem. Geophys. Geosyst. 15, 3107–3122 (2014).

    Article  Google Scholar 

  271. Hosseini, K. et al. SubMachine: web-based tools for exploring seismic tomography and other models of Earth’s deep interior. Geochem. Geophys. Geosyst. 19, 1464–1483 (2018).

    Article  Google Scholar 

  272. Wamba, M. D., Montagner, J.-P. & Romanowicz, B. Imaging deep-mantle plumbing beneath La Réunion and Comores hot spots: vertical plume conduits and horizontal ponding zones. Sci. Adv. 9, eade3723 (2023).

    Article  Google Scholar 

  273. Farnetani, C. G. & Samuel, H. Beyond the thermal plume paradigm. Geophys. Res. Lett. 32, L07311 (2005).

    Article  Google Scholar 

  274. Garnero, E. & McNamara, A. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article  Google Scholar 

  275. Elliott, T., Thomas, A., Jeffcoate, A. & Niu, Y. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565–568 (2006).

    Article  Google Scholar 

  276. Tomascak, P. B., Langmuir, C. H., leRoux, P. J. & Shirey, S. B. Lithium isotopes in global mid-ocean ridge basalts. Geochim. Cosmochim. Acta 72, 1626–1637 (2008).

    Article  Google Scholar 

  277. Kobayashi, K., Tanaka, R., Moriguti, T., Shimizu, K. & Nakamura, E. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem. Geol. 212, 143–161 (2004).

    Article  Google Scholar 

  278. Ryan, J. G. & Kyle, P. R. Lithium abundance and lithium isotope variaitons in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chem. Geol. 212, 125–142 (2004).

    Article  Google Scholar 

  279. Nishio, Y. et al. Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet. Sci. Lett. 217, 245–261 (2004).

    Article  Google Scholar 

  280. Chan, L.-H., Lassiter, J. C., Hauri, E. H., Hart, S. R. & Blusztajn, J. Lithium isotope systematics of lavas from the Cook-Austral Islands: constraints on the origin of HIMU mantle. Earth Planet. Sci. Lett. 277, 433–442 (2009).

    Article  Google Scholar 

  281. Manga, T., Wiechert, U., Stuart, F. M., Halliday, A. N. & Harrison, D. Combined Li-He isotopes on Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle. Geochim. Cosmochim. Acta 75, 922–936 (2011).

    Article  Google Scholar 

  282. Schuessler, J. A., Schoenberg, R. & Sigmarsson, O. Iron and lithium isotope systematics of the Heckla volcano, Iceland — evidence for Fe isotope fractionation during magma differentiation. Chem. Geol. 258, 78–91 (2009).

    Article  Google Scholar 

  283. Genske, F. S. et al. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chem. Geol. 373, 27–36 (2014).

    Article  Google Scholar 

  284. Andreasen, R., Sharma, M., Subbarao, K. V. & Viladkar, S. G. Where on Earth is the enriched Hadean reservoir? Earth Planet. Sci. Lett. 266, 14–28 (2008).

    Article  Google Scholar 

  285. Murphy, D. T., Brandon, A. D., Debaille, V., Burgess, R. & Ballentine, C. In search of a hidden long-term isolated sub-chondritic 142Nd/144Nd reservoir in the deep mantle: implications for the Nd isotope systematics of the Earth. Geochim. Cosmochim. Acta 74, 738–750 (2010).

    Article  Google Scholar 

  286. Burkhardt, C. et al. A nucleosynthetic origin for the Earth’s anomalous 142Nd composition. Nature 537, 394–398 (2016).

    Article  Google Scholar 

  287. Saji, N. K., Wielandt, D., Paton, C. & Bizzaro, M. Ultra-high-precision Nd-isotope measurements of geological materials by MC-ICPMS. J. Anal. At. Spectrom. 31, 1490–1504 (2016).

    Article  Google Scholar 

  288. de Leeuw, G. A. M., Ellam, R. M., Stuart, F. M. & Carlson, R. W. Nd-142/Nd-144 inferences on the nature and origin of the source of high He-3/He-4 magmas. Earth Planet. Sci. Lett. 472, 62–68 (2017).

    Article  Google Scholar 

  289. Garçon, M. et al. Factors influencing the precision and accuracy of Nd isotope measurements by thermal ionization mass spectrometry. Chem. Geol. 476, 493–514 (2018).

    Article  Google Scholar 

  290. Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variations in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Proc. Natl Acad. Sci. USA 117, 14738–14744 (2020).

    Article  Google Scholar 

  291. Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High He-3/He-4 ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).

    Article  Google Scholar 

  292. Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Article  Google Scholar 

  293. Kruijer, T. S. & Kleine, T. No W-182 excess in the Ontong Java Plateau source. Chem. Geol. 485, 24–31 (2018).

    Article  Google Scholar 

  294. Basford, J. R., Dragon, J. C., Pepin, R. O., Coscio, J. M. R. & Murthy, V. R. Krypton and xenon in lunar fines. Geochim. Cosmochim. Acta 4, 1915–1955 (1973).

    Google Scholar 

  295. Farnetani, C. G., Legras, B. & Tackley, P. J. Mixing and deformation in mantle plumes. Earth Planet. Sci. Lett. 196, 1–15 (2002).

    Article  Google Scholar 

  296. Lin, S. C. & van Keken, P. E. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst. 7, Q03003 (2006).

    Article  Google Scholar 

  297. Coffin, M. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Article  Google Scholar 

  298. White, R. S. & McKenzie, D. P. Volcanism at rifts. Sci. Am. 261, 62–71 (1989).

    Article  Google Scholar 

  299. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  Google Scholar 

  300. Dziewonski, A. M. & Woodhouse, J. H. Global images of the Earth’s interior. Science 236, 37–48 (1987).

    Article  Google Scholar 

  301. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. Geophys. Monogr. Ser. 117, 63–87 (2000).

    Google Scholar 

  302. Garnero, E., Lay, T. & McNamara, A. Implications of lower mantle structural heterogeneity for existence and nature of whole mantle plumes. Spec. Pap. Geol. Soc. Am. 430, 79–101 (2007).

    Google Scholar 

  303. Pearce, J. A., Ernst, R. E., Peate, D. W. & Rogers, C. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos 392393, 106068 (2021).

    Article  Google Scholar 

  304. Doucet, S., Scoates, J. S., Weis, D. & Giret, A. Constraining the components of the Kerguelen mantle plume: a Hf-Pb-Sr-Nd isotopic study of picrites and high-MgO basalts from the Kerguelen Archipelago. Geochem. Geophys. Geosyst. 6, Q04007 (2005).

    Article  Google Scholar 

  305. Frey, F. A., Weis, D., Borisova, A. & Xu, G. Involvement of continental crust in the formation of the Cretaceous Kerguelen Plateau: new perspectives from ODP Leg 120 sites. J. Petrol. 43, 1207–1239 (2002).

    Article  Google Scholar 

  306. Yang, H.-J. et al. Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the Kerguelen plume. J. Petrol. 39, 711–748 (1998).

    Article  Google Scholar 

  307. Upadhyay, D., Scherer, E. E. & Mezger, K. Fractionation and mixing of Nd isotopes during thermal ionization mass spectrometry: implications for high precision 142Nd/144Nd analyses. J. Anal. At. Spec. 23, 561–568 (2008).

    Article  Google Scholar 

  308. Roth, A. S. G. et al. Combined Sm-147, Sm-146-Nd-143, Nd-142 constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosyst. 15, 2329–2345 (2014).

    Article  Google Scholar 

  309. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

    Article  Google Scholar 

  310. Manhès, G., Minster, J. F. & Allègre, C. J. Comparative uranium–thorium–lead and rubidium–strontium study of the Saint Sèverin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39, 14–24 (1978).

    Article  Google Scholar 

  311. Dupré, B. & Allègre, C. J. Pb-Sr-Nd isotopic correlation and the chemistry of the North Atlantic mantle. Nature 286, 17–22 (1980).

    Article  Google Scholar 

  312. McDonough, W. F. & Chauvel, C. Sample contamination explains the Pb isotopic composition of some Rurutu Island and Sasha Seamount basalts. Earth Planet. Sci. Lett. 105, 397–404 (1991).

    Article  Google Scholar 

  313. Abouchami, W., Galer, S. J. G. & Hofmann, A. W. High precision lead isotope systematics of lavas from the Hawaiian scientific drilling project. Chem. Geol. 169, 187–209 (2000).

    Article  Google Scholar 

  314. Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC–ICP–MS. Geochem. Geophys. Geosyst. 7, Q08006 (2006).

    Article  Google Scholar 

  315. Weis, D. et al. Hf isotope compositions of U.S. Geological Survey reference materials. Geochem. Geophys. Geosyst. 8, Q06006 (2007).

    Article  Google Scholar 

  316. Hanano, D., Scoates, J. S. & Weis, D. Alteration mineralogy and the effect of acid-leaching on the Pb-isotope systematics of ocean-island basalts. Am. Min. 94, 17–26 (2009).

    Article  Google Scholar 

  317. Nobre-Silva, I. G., Weis, D., Barling, J. & Scoates, J. S. Basalt leaching systematics and consequences for Pb isotopic compositions by MC–ICP–MS. Geochem. Geophys. Geosyst. 10, Q08012 (2009).

    Google Scholar 

  318. Nobre-Silva, I. G., Weis, D. & Scoates, J. S. Effects of acid leaching on the Sr-Nd-Hf isotopic compositions of ocean island basalts. Geochem. Geophys. Geosyst. 11, Q09011 (2010).

    Article  Google Scholar 

  319. Nobre-Silva, I. G., Weis, D., Scoates, J. S. & Barling, J. The Ninetyeast Ridge and its relation to the Kerguelen, Amsterdam and St. Paul hotspots in the Indian Ocean. J. Petrol. 54, 1177–1210 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

D.W. acknowledges support from the Natural Sciences and Engineering Research Council of Canada through a Discovery Grant (‘From mantle geodynamics to environmental processes: a geochemical perspective’) and from UBC for the Killam Professorship. K.S.H. received support from the National Science Foundation Grant RUI ‘The effect of a mid-ocean ridge-centered environment on a zoned mantle plume and associated secondary magmatism’ (NSF award number 2018283). L.N.H. is grateful for the support of the U.S. Geological Survey (USGS) Volcano Science Center and the USGS Mendenhall Postdoctoral program. M.B. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 682778). C.C. acknowledges support from ERC (Grant Agreement No. 833632 — Survival of Hadean Remnants in a Dynamic mantle). R.P. was supported by NSF EAR 2145663. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article. D.W. shared the vision and all authors contributed substantially to discussion of the content during various online meetings, as a group and for individual sections. All authors wrote the article. K.S.H., M.B. and C.C. coordinated sections. L.N.H., V.A.F. and N.M.B.W. compiled data and helped for figures. All authors reviewed and/or edited the manuscript.

Corresponding author

Correspondence to Dominique Weis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks V. Salters, C. Class, A. Sobolev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weis, D., Harpp, K.S., Harrison, L.N. et al. Earth’s mantle composition revealed by mantle plumes. Nat Rev Earth Environ 4, 604–625 (2023). https://doi.org/10.1038/s43017-023-00467-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00467-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing