Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Microquasars in our Galaxy

Abstract

Microquasars are stellar-mass black holes in our Galaxy that mimic, on a smaller scale, many of the phenomena seen in quasars. Their discovery opens the way for a new understanding of the connection between the accretion of matter onto black holes and the origin of the relativistic jets observed in remote quasars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram illustrating current ideas about quasars and microquasars (not to scale).
Figure 2: A pair of plasma clouds expelled from the microquasar GRS1915+105, the first superluminal source detected in the galaxy2.
Figure 3: Oscillations in the luminosity at X-rays (2–60 keV), infrared (2 µm) and radio (6 cm) wavelengths of the galactic source of superluminal jets CRS1915+105 (ref. 7).

Similar content being viewed by others

References

  1. Mirabel, I. F. et al. Adouble-sided radio jet from the compact Galactic Centre annihilator 1E1740.7-2942. Nature 350, 215–218 (1992).

    Article  ADS  Google Scholar 

  2. Mirabel, I. F. & Rodríguez, L. F. Asuperluminal source in the galaxy. Nature 371, 46–48 (1994).

    Article  ADS  Google Scholar 

  3. Tingay, S. J. et al. Arelativistically expanding radio source associated with GRO J1655-40. Nature 374, 141–143 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Hjellming, R. M. & Rupen, M. P. Episodic ejection of relativistic jets by the X-ray transient GRO J1655-40. Nature 375, 464–467 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs, and Neutron Stars 441 (Wiley, New York, 1983).

    Book  Google Scholar 

  6. Rodríguez, L. F. & Mirabel, I. F. Repeated relativistic ejections in GRS 1915+105. Astrophys. J. (submitted).

  7. Mirabel, I. F. et al. Accretion instabilities and jet formation in GRS 1915+105. Astron. Astrophys. 330, L9–L12 (1998).

    ADS  Google Scholar 

  8. Eikenberry, S. S. et al. Evidence for disk-jet interaction in the microquasar GRS 1915+105. Astrophys. J. 494, L61–L64 (1998).

    Article  ADS  Google Scholar 

  9. Pearson, T. J. & Zensus, J. A. in Superluminal Radio Sources (eds Zensus, J. A. & Pearson, T. J.) 1–11 (Cambridge Univ. Press, 1987).

    Google Scholar 

  10. Castro-Tirado, A. J. et al. Discovery and observations by Watch of the X-ray transient GRS 1915+105. Astrophys. J. Suppl. Ser. 92, 469–472 (1994).

    Article  ADS  Google Scholar 

  11. Zhang, S. N., Wilson, C. A., Harmon, B. A., Fishman, G. J. & Wilson, R. B. X-ray nova in Scorpius. IAU Circ. No. 6046 (1994).

  12. Hjellming, R. M. & Johnston, K. J. An analysis of the proper motions of SS433 radio jets. Astrophys. J. 246, L141–L145 (1981).

    Article  ADS  Google Scholar 

  13. Harmon, B. A. et al. Hard X-ray signature of plasma ejection in the galactic jet source GRS 1915+105. Astrophys. J. 477, L85–L90 (1997).

    Article  ADS  Google Scholar 

  14. Foster, R. S. et al. Radio and X-ray variability of the galactic superluminal source GRS 1915+105. Astrophys. J. 467, L81–L84 (1996).

    Article  ADS  Google Scholar 

  15. Mirabel, I. F. et al. Infrared observations of an energetic outburst in GRS 1915+105. Astrophys. J. 472, L111–L114 (1996).

    Article  ADS  Google Scholar 

  16. Zhang, S. N. et al. in Proceedings of the 4th Compton Symposium (eds Dermer, C. D., Strickman, M. S. & Kurfess, J. D.) 141–162 (AIP Conf. Proc. 410, 1997).

    Google Scholar 

  17. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–894 (1982).

    Article  ADS  Google Scholar 

  18. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–440 (1977).

    Article  ADS  Google Scholar 

  19. Zhang, S. N., Cui, W. & Chen, W. Black hole spin in X-ray binaries: observational consequences. Astrophys. J. 482, L155–L158 (1997).

    Article  ADS  Google Scholar 

  20. Morgan, E. H., Remillard, R. A. & Greiner, J. RXTE observations of QPOs in the black hole candidate GRS 1915+105. Astrophys. J. 482, 993–1010 (1997).

    Article  ADS  Google Scholar 

  21. Nowak, M. A., Wagoner, R. V., Begelman, M. C. & Lehr, D. E. The 67 Hz feature in the black hole candidate GRS 1915+105 as a possible “diskoseismic” mode. Astrophys. J. 477, L91–L94 (1997).

    Article  ADS  Google Scholar 

  22. Cui, W., Zhang, S. N. & Chen, W. Evidence for frame-dragging around spinning black holes in X-ray binaries. Astrophys. J. 492, L53–L57 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Greiner, J., Morgan, E. H. & Remillard, R. A. Rossi X-ray timing explorer observations of GRS 1915+105. Astrophys. J. 473, L107–L110 (1996).

    Article  ADS  Google Scholar 

  24. Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. An unstable central disk in the superluminal black hole X-ray binary GRS 1915+105. Astrophys. J. 479, L145–L148 (1997).

    Article  ADS  Google Scholar 

  25. Chen, X., Swank, J. H. & Taam, R. E. Rapid bursts from GRS 1915+105 with RXTE. Astrophys. J. 477, L41–L44 (1997).

    Article  ADS  Google Scholar 

  26. Narayan, R., Garcia, M. R. & McClintock, J. E. Advection-dominated accretion and black hole event horizons. Astrophys. J. 478, L79–L82 (1997).

    Article  ADS  Google Scholar 

  27. Pooley, G. & Fender, R. P. Quasi-periodic variations in the radio emission from GRS 1915+105. Mon. Not. R. Astron. Soc. (in the press).

  28. Rodríguez, L. F. & Mirabel, I. F. Sinusoidal oscillations in the radio flux of GRS 1915+105. Astrophys. J. 474, L123–L125 (1997).

    Article  ADS  Google Scholar 

  29. Fender, R. P., Pooley, G. G., Brocksopp, C. & Newell, S. J. Rapid infrared flares in GRS 1915+105: evidence for infrared synchrotron emission. Mon. Not. R. Astron. Soc. 179, L65–L69 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We have benefited from discussions with colleagues at the Goddard workshop on Microquasars, and we thank J. Swank and A. Harmon for organizing this workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Mirabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabel, I., Rodríguez, L. Microquasars in our Galaxy. Nature 392, 673–676 (1998). https://doi.org/10.1038/33603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/33603

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing