Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope

Abstract

The adsorption of organic molecules on solid substrates is a fundamental step in many important heterogeneous catalytic processes, and is also becoming an increasingly significant aspect of surface modification in microelectronics and sensing technology. The conformation of adsorbed molecules not only influences the outcome of surface-catalysed reactions but also becomes important for recognition processes involved in chemical sensors. The scanning tunnelling microscope (STM) is uniquely able to monitor surface structures at the individual-molecule level1, and has been shown previously to be capable of distinguishing between different molecular conformations on a surface2. Here we show that the geometric configuration (cis or trans) of several simple alkenes chemisorbed on the silicon (100) surface can be determined using the STM, through its ability to identify individual methyl groups. Because both the position and the orientation of these groups can be seen, we can determine the absolute configuration (R or S) for each of the chiral centres formed on chemisorption. Thus the STM can probe enantioselective processes at surfaces at the single-molecule level, and may assist in the development of structured chiral surfaces capable of complex recognition tasks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM images of propylene (a), trans-2-butene (b) and cis-2-butene (c) on Si(100).
Figure 2: The planar trans-2-butene molecule has two distinct faces.

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H., Gerber, Ch. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–60 (1982).

    Article  ADS  Google Scholar 

  2. Jung, T. A., Schlitter, R. R. & Gimzewski, J. K. Conformational identification of individual adsorbed molecules with the STM. Nature 386, 696–398 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Becker, R. & Wolkow, R. A. in Scanning Tunneling Microscopy (eds Stroscio, J. A. & Kaiser, W. J.) Vol. 27in Methods of Experimental Physics (Academic, 1993).

    Google Scholar 

  4. Bozack, M. J., Taylor, P. A., Choyke, W. J. & Yates, J. T. J Chemical activity of the C=C double bond. Surf. Sci. 177, L933–L937 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Yoshinobu, J., Tsuda, H., Onchi, M. & Nishijima, M. The adsorbed states of ethylene on Si(100)c(4x2), Si(100)(2x1), and vicinal Si(100)9°: electron energy loss spectroscopy and low energy electron diffraction studies. J. Chem. Phys. 87, 7332–7340 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Clemen, L. et al. Adsorption and thermal behavior of ethylene on Si(100)-(2 × 1). Surf. Sci. 268, 205–216 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Huang, C., Widdra, W. & Weinberg, W. H. Adsorption of ethylene on the Si(100)-2x1 surface. Surf. Sci. 315, L953–L958 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Fisher, A. J., Blochl, P. E. & Briggs, G. A. D. Hydrocarbon adsorption on Si(100): when does the silicon dimer bond break? Surf. Sci. 374, 298–305 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Pan, W., Zhu, T. & Yang, W. First-principles study of the structure and electronic properties of ethylene adsorption on Si(100)-2x1 surface. J. Chem. Phys. 107, 3981–3985 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Kiskinova, M. & Yates, J. T. Observation of steric conformation effects in hydrocarbon adsorption and decomposition: cis- and trans-butene-2 on Si(100)-(2x1). Surf. Sci. 325, 1–10 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Dewar, M. J. S. & Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99, 4899–4907 (1977).

    Article  CAS  Google Scholar 

  12. Davis, L. P. et al. MNDO calculations for compounds containing aluminum and boron. J. Comput. Chem. 2, 433–438 (1981).

    Article  CAS  Google Scholar 

  13. Dewar, M. J. S., McKee, M. L. & Rzepa, H. S. MNDO parameters for third period elements. J. Am. Chem. Soc. 100, 3607 (1978).

    Article  CAS  Google Scholar 

  14. Dewar, M. J. S., Zoebisch, E. G. & Healy, E. F. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985).

    Article  CAS  Google Scholar 

  15. Dewar, M. J. S. & Reynolds, C. H. An improved set of MNDO parameters for sulfur. J. Comput. Chem. 2, 140–148 (1986).

    Article  Google Scholar 

  16. Wolkow, R. A. & Avouris, Ph. Atom-resolved surface chemistry using scanning tunneling microscopy. Phys. Rev. Lett. 60, 1049–1052 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Boland, J. J. Role of bond strain in the chemistry of H on Si(100). Surf. Sci. 261, 17–25 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Mayne, A. J. et al. An STM study of the chemisorption of C2H4on Si(001)(2x1). Surf. Sci. 284, 247–256 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Liu, H. & Hamers, R. J. Stereoselectivity in molecule surface reactions: adsorption of ethylene on the Si(100) surface. J. Am. Chem. Soc. 119, 7593–7594 (1997).

    Article  CAS  Google Scholar 

  20. Wolkow, R. A. Direct observation of an increase in buckled dimers on Si(001) at low temperature. Phys. Rev. Lett. 68, 2636–2639 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Wolkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopinski, G., Moffatt, D., Wayner, D. et al. Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope. Nature 392, 909–911 (1998). https://doi.org/10.1038/31913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31913

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing