Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime

Abstract

There is compelling evidence that phytoplankton growth is limited by iron availability in the subarctic Pacific1, and equatorial Pacific2 and Southern oceans3. A lack of iron prevents the complete biological utilization of the ambient nitrate and influences phytoplankton species composition in these open-ocean ‘high-nitrate, low-chlorophyll’ (HNLC) regimes4. But the effects of iron availability on coastal primary productivity and nutrient biogeochemistry are unknown. Here we present the results of shipboard seawater incubation experiments which demonstrate that phytoplankton are iron-limited in parts of the California coastal upwelling region. As in offshore HNLC regimes, the addition of iron to these nearshore HNLC waters promotes blooms of large chain-forming diatoms. The silicic acid:nitrate (Si:N) uptake ratios in control incubations are two to three times higher than those in iron incubations. Diatoms stressed by a lack of iron should therefore deplete surface waters of silicic acid before nitrate, leading to a secondary silicic acid limitation of the phytoplankton community. Higher Si:cell, Si:C and Si:pigment ratios in diatoms in the control incubations suggest that iron limitation leads to more silicified, faster-sinking diatom biomass. These results raise fundamental questions about the nature of nutrient-limitation interactions in marine ecosystems, palaeoproductivity estimates based on the sedimentary accumulation of biogenic opal, and the controls on carbon export from some of the world's most productive surface waters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chl a and nutrient concentrations in the Big Sur 1997A Fe addition experiment.

Similar content being viewed by others

References

  1. Martin, J. H. & Fitzwater, S. E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Coale, K. H.et al. Amassive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383, 495–501 (1996).

    Article  ADS  CAS  Google Scholar 

  3. de Baar, H. J. W.et al. On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Hutchins, D. A. in Progress in Phycological ResearchVol. II (eds Chapman, D. & Round, F.) 1–49 (Biopress, Bristol, (1995).

    Google Scholar 

  5. Bruland, K. W., Donat, J. R. & Hutchins, D. A. Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol. Oceanogr. 36, 1555–1577 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Chavez, F. P.et al. Phytoplankton variability in the central and eastern tropical Pacific. Deep-Sea Res. II 43, 835–870 (1996).

    Article  ADS  CAS  Google Scholar 

  7. DiTullio, G. R., Hutchins, D. A. & Bruland, K. W. Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical north Pacific Ocean. Limnol. Oceanogr. 38, 495–506 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Sharp, J. H. Improved analysis for ‘particulate’ organic carbon and nitrogen from seawater. Limnol. Oceanogr. 19, 984–989 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Brzezinski, M. A. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347–357 (1985).

    Article  CAS  Google Scholar 

  10. Geider, R. J. & LaRoche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosyn. Res. 39, 275–301 (1994).

    Article  CAS  Google Scholar 

  11. Martin, J. H. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 123–137 (Plenum, New York, (1992).

    Book  Google Scholar 

  12. Handbook of Chemistry and Physics63rd edn (eds Weast, R. C. & Astle, M. J.) (CRC, Boca Raton, (1982).

  13. Dugdale, R. C., Wilkerson, F. P. & Minas, H. J. The role of a silicate pump in driving new production. Deep-Sea Res. I 42, 697–719 (1995).

    Article  CAS  Google Scholar 

  14. Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the eastern equatorial Pacific. Nature 391, 270–273 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Martin, J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Minas, H. J. & Minas, M. Net community production in ‘High Nutrient-Low Chlorophyll’ waters of the tropical and Antarctic Oceans: grazing versus iron hypothesis. Ocean. Acta 15, 145–162 (1992).

    CAS  Google Scholar 

  17. de Baar, H. J. W.et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Harrison, P. J., Conway, H. L., Holmes, R. W. & Davis, C. O. Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular composition and morphology of Chaetoceros debilis, Skeletonema costatum and Thalassiosira gravida. Mar. Biol. 43, 19–31 (1977).

    Article  CAS  Google Scholar 

  19. Hutchins, D. A., DiTullio, G. R. & Bruland, K. W. Iron and regenerated production: evidence for biological iron recycling in two marine environments. Limnol. Oceanogr. 38, 1242–1255 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Muggli, D. L., Lecourt, M. & Harrison, P. J. Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific. Mar. Ecol. Prog. Ser. 132, 215–227 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Mortlock, R. A.et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991).

    Article  ADS  Google Scholar 

  22. Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A. & Morley, J. J. Biogenic opal in Southern Ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation. Paleoceanography 6, 697–728 (1991).

    Article  ADS  Google Scholar 

  23. Rue, E. L. & Bruland, K. W. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol. Oceanogr. 42, 901–910 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Bruland, K. W., Franks, R. P., Knauer, G. A. & Martin, J. H. Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Anal. Chim. Acta 105, 233–245 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Sanderson, C. De La Rocha, Y. Zhang, M. Schwartz, G. Smith, M.Brzezinski, V. Franck, N. Fisher, P. Harrison, D. Kirchman, S. Wilhelm, A. Witter and the captain and crew of the RV Pt. Sur. This work was supported by NSF Chemical and Biological Oceanography and University of Delaware Research Foundation funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Hutchins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchins, D., Bruland, K. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998). https://doi.org/10.1038/31203

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31203

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing