Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin domains in ground-state Bose–Einstein condensates

Abstract

Bose–Einstein condensates — a low-temperature form of matter in which a macroscopic population of bosons occupies the quantum-mechanical ground state — have been demonstrated for weakly interacting, dilute gases of alkali-metal1,2,3 and hydrogen25 atoms. Magnetic traps are usually employed to confine the condensates, but have the drawback that spin flips in the atoms lead to untrapped states. For this reason, the spin orientation of the trapped alkali atoms cannot be regarded as a degree of freedom. Such condensates are therefore described by a scalar order parameter, like the spinless superfluid 4He. In contrast, a recently realized optical trap4 for sodium condensates confines atoms independently of their spin orientations. This offers the possibility of studying ‘spinor’ condensates in which spin comprises a degree of freedom, so that the order parameter is a vector rather than scalar quantity. Here we report the observation of equilibrium states of sodium spinor condensates in an optical trap. The freedom of spin orientation leads to the formation of spin domains in an external magnetic field, which can be either miscible or immiscible with one another.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-domain diagrams for condensates with F = 1.
Figure 2: Formation of ground-state spin domains.
Figure 3: Miscible and immiscible spin domains.
Figure 4: Estimate of the antiferromagnetic interaction energy c.

Similar content being viewed by others

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Stamper-Kurn, D. M. et al. Optical confinement of a Bose-Einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Ho, T.-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Ohmi, T. & Machida, K. Bose-Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose-Einstein condensates. Phys. Rev. Lett. (submitted); preprint cond-mat/9807258 at 〈http://xxx.lanl.gov 〉 (1998).

  8. Vollhardt, D. & Wölfle, P. The Superfluid Phases of 3He (Taylor-Francis, London, 1990).

    Book  Google Scholar 

  9. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. & Cornell, E. A. The dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Hall, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Measurements of relative phase in binary mixtures of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1543–1546 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Siggia, E. D. & Ruckenstein, A. E. Bose condensation in spin-polarized atomic hydrogen. Phys. Rev. Lett. 44, 1423–1426 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Ho, T.-L. & Shenoy, V. B. Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276–3279 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Timmermans, E. Phase separation in Bose-Einstein condensates. Phys. Rev. Lett. (submitted); preprint cond-mat/9709301 at 〈http://xxx.lanl.gov 〉 (1997).

  15. Esry, B. D., Greene, C. H., Bruke, J. P. & Bohn, J. L. Hartree-Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Öhberg, P. & Stenholm, S. Hartree–Fock treatment of the two-component Bose-Einstein condensate. Phys. Rev. A 57, 1272–1279 (1998).

    Article  ADS  Google Scholar 

  17. Pu, H. & Bigelow, N. P. Properties of two-species Bose condensates. Phys. Rev. Lett. 80, 1130–1133 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Ao, P. & Chui, S. T. Binary Bose–Einstein condensate mixtures in weakly and strongly segregated phases. Phys. Rev. A 58(6) (in the press).

  19. Busch, T., Cirac, J. I., Pérez-García, V. M. & Zoller, P. Stability and collective excitations of a two-component Bose-Einstein condensed gas: a moment approach. Phys. Rev. A 56, 2978–2983 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Graham, R. & Walls, D. Collective excitations of trapped binary mixtures of Bose-Einstein condensed gases. Phys. Rev. A 57, 484–487 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Pu, H. & Bigelow, N. P. Collective excitations, metastability, and nonlinear response of a trapped two-species Bose-Einstein condensate. Phys. Rev. Lett. 80, 1134–1137 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Esry, B. D. & Greene, C. H. Low-lying excitations of double Bose-Einstein condensates. Phys. Rev. A 57, 1265–1271 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Mewes, M.-O. et al. Bose-Einstein condensation in a tightly confining dc magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Burke, J. P., Greene, C. H. & Bohn, J. L. Multichannel cold collisions: simple dependencies on energy and magnetic field. Phys. Rev. Lett. 81, 3355–3358 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Fried, D. G. et al. Bose–Einstein condensation of atomic hydrogen. Phys. Rev. Lett. (in the press).

Download references

Acknowledgements

We acknowledge discussions with J. Ho and C. Greene. This work was supported by the Office of Naval Research, NSF, Joint Services Electronics Program (ARO), NASA, and the David and Lucile Packard Foundation. J.S. acknowledges support from the Alexander von Humbolt foundation, D.M.S.-K. from the JSEP Graduate Fellowship Program, and A.P.C. from the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenger, J., Inouye, S., Stamper-Kurn, D. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998). https://doi.org/10.1038/24567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24567

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing