Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chronic Myeloid Leukemia, BCR QBL Studies QND Myeloproliferative Disorders

Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development

Abstract

BCR/ABL-kinase mutations frequently mediate clinical resistance to the selective tyrosine kinase inhibitor Imatinib mesylate (IM, Gleevec®). However, mechanisms that promote survival of BCR/ABL-positive cells before clinically overt IM resistance occurs have poorly been defined so far. Here, we demonstrate that IM-treatment activated the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTor)-pathway in BCR/ABL-positive LAMA-cells and primary leukemia cells in vitro, as well as in a chronic phase CML patient in vivo. In fact, PI3K/Akt-activation critically mediated survival during the early phase of IM resistance development before manifestation of BCR/ABL-dependent strong IM resistance such as through a kinase mutation. Accordingly, inhibition of IM-induced Akt activation using mTor inhibitors and Akt-specific siRNA effectively antagonized development of incipient IM-resistance in vitro. In contrast, IM-resistant chronic myeloid leukemia (CML) patients with BCR/ABL kinase mutations (n=15), and IM-refractory BCR/ABL-positive acute lymphatic leukemia patients (n=2) displayed inconsistent and kinase mutation-independent autonomous patterns of Akt-pathway activation, and mTor-inhibition overcame IM resistance only if Akt was strongly activated. Together, an IM-induced compensatory Akt/mTor activation may represent a novel mechanism for the persistence of BCR/ABL-positive cells in IM-treated patients. Treatment with mTor inhibitors may thus be particularly effective in IM-sensitive patients, whereas Akt-pathway activation variably contributes to clinically overt IM resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rudkin CT, Hungerford DA, Nowell PC . DNA contents of chromosome Ph1 and chromosome 21 in human chronic granulocytic leukemia. Science 1964; 144: 1229–1231.

    Article  CAS  Google Scholar 

  2. Rowley JD . Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    Article  CAS  Google Scholar 

  3. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554.

    Article  CAS  Google Scholar 

  4. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  Google Scholar 

  5. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  Google Scholar 

  6. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  CAS  Google Scholar 

  7. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  Google Scholar 

  8. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  Google Scholar 

  9. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002; 100: 1965–1971.

    Article  CAS  Google Scholar 

  10. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  Google Scholar 

  11. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002; 99: 3472–3475.

    Article  CAS  Google Scholar 

  12. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  Google Scholar 

  13. von Bubnoff N, Schneller F, Peschel C, Duyster J . BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002; 359: 487–491.

    Article  CAS  Google Scholar 

  14. Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–2196.

    Article  CAS  Google Scholar 

  15. Hochhaus A, Kreil S, Corbin A, La Rosee P, Lahaye T, Berger U et al. Roots of clinical resistance to STI-571 cancer therapy. Science 2001; 293: 2163.

    Article  CAS  Google Scholar 

  16. Kirschner KM, Baltensperger K . Erythropoietin promotes resistance against the Abl tyrosine kinase inhibitor imatinib (STI571) in K562 human leukemia cells. Mol Cancer Res 2003; 1: 970–980.

    CAS  PubMed  Google Scholar 

  17. Ohmine K, Nagai T, Tarumoto T, Miyoshi T, Muroi K, Mano H et al. Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR. Stem Cells 2003; 21: 315–321.

    Article  CAS  Google Scholar 

  18. Parmar S, Katsoulidis E, Verma A, Li Y, Sassano A, Lal L et al. Role of the p38 mitogen-activated protein kinase pathway in the generation of the effects of imatinib mesylate (STI571) in BCR-ABL-expressing cells. J Biol Chem 2004; 279: 25345–25352.

    Article  CAS  Google Scholar 

  19. Chu S, Holtz M, Gupta M, Bhatia R . BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–3174.

    Article  CAS  Google Scholar 

  20. Sonoyama J, Matsumura I, Ezoe S, Satoh Y, Zhang X, Kataoka Y et al. Functional cooperation among Ras, STAT5, and phosphatidylinositol 3-kinase is required for full oncogenic activities of BCR/ABL in K562 cells. J Biol Chem 2002; 277: 8076–8082.

    Article  CAS  Google Scholar 

  21. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995; 86: 726–736.

    CAS  PubMed  Google Scholar 

  22. Engelman JA, Janne PA, Mermel C, Pearlberg J, Mukohara T, Fleet C et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA 2005; 102: 3788–3793.

    Article  CAS  Google Scholar 

  23. Klejman A, Rushen L, Morrione A, Slupianek A, Skorski T . Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 2002; 21: 5868–5876.

    Article  CAS  Google Scholar 

  24. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000; 60: 3504–3513.

    CAS  PubMed  Google Scholar 

  25. Chung J, Kuo CJ, Crabtree GR, Blenis J . Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kDa S6 protein kinases. Cell 1992; 69: 1227–1236.

    Article  CAS  Google Scholar 

  26. Rintelen F, Stocker H, Thomas G, Hafen E . PDK1 regulates growth through Akt and S6K in Drosophila. Proc Natl Acad Sci USA 2001; 98: 15020–15025.

    Article  CAS  Google Scholar 

  27. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA et al. Phosphorylation and activation of p70s6k by PDK1. Science 1998; 279: 707–710.

    Article  CAS  Google Scholar 

  28. Luo J, Manning BD, Cantley LC . Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4: 257–262.

    Article  CAS  Google Scholar 

  29. Harada H, Andersen JS, Mann M, Terada N, Korsmeyer SJ . p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci USA 2001; 98: 9666–9670.

    Article  CAS  Google Scholar 

  30. Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 2000; 288: 2045–2047.

    Article  CAS  Google Scholar 

  31. Oberbauer R, Kreis H, Johnson RW, Mota A, Claesson K, Ruiz JC et al. Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the Rapamune Maintenance Regimen Study. Transplantation 2003; 76: 364–370.

    Article  CAS  Google Scholar 

  32. Jayaraman T, Marks AR . Rapamycin-FKBP12 blocks proliferation, induces differentiation, and inhibits cdc2 kinase activity in a myogenic cell line. J Biol Chem 1993; 268: 25385–25388.

    CAS  PubMed  Google Scholar 

  33. Sawyers CL . Will mTOR inhibitors make it as cancer drugs? Cancer Cell 2003; 4: 343–348.

    Article  CAS  Google Scholar 

  34. Ly C, Arechiga AF, Melo JV, Walsh CM, Ong ST . Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 2003; 63: 5716–5722.

    CAS  PubMed  Google Scholar 

  35. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci USA 2004; 101: 3130–3135.

    Article  CAS  Google Scholar 

  36. Boulay A, Zumstein-Mecker S, Stephan C, Beuvink I, Zilbermann F, Haller R et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res 2004; 64: 252–261.

    Article  CAS  Google Scholar 

  37. Burchert A, Cai D, Hofbauer LC, Samuelsson MK, Slater EP, Duyster J et al. Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood 2004; 103: 3480–3489.

    Article  CAS  Google Scholar 

  38. Von Bubnoff N, Veach DR, Van Der Kuip H, Aulitzky WE, Sanger J, Seipel P et al. A cell-based screen for resistance of Bcr-Abl positive leukemia identifies the mutation pattern for PD166326, an alternative Abl kinase inhibitor. Blood 2004; 105: 1652–1659.

    Article  Google Scholar 

  39. Kozikowski AP, Sun H, Brognard J, Dennis PA . Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J Am Chem Soc 2003; 125: 1144–1145.

    Article  CAS  Google Scholar 

  40. Huang S, Houghton PJ . Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 2003; 3: 371–377.

    Article  CAS  Google Scholar 

  41. Eisen HJ, Tuzcu EM, Dorent R, Kobashigawa J, Mancini D, Valantine-von Kaeppler HA et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac-transplant recipients. N Engl J Med 2003; 349: 847–858.

    Article  CAS  Google Scholar 

  42. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  Google Scholar 

  43. Muller MC, Gattermann N, Lahaye T, Deininger MW, Berndt A, Fruehauf S et al. Dynamics of BCR-ABL mRNA expression in first-line therapy of chronic myelogenous leukemia patients with imatinib or interferon alpha/ara-C. Leukemia 2003; 17: 2392–2400.

    Article  CAS  Google Scholar 

  44. Scheuring UJ, Pfeifer H, Wassmann B, Bruck P, Gehrke B, Petershofen EK et al. Serial minimal residual disease (MRD) analysis as a predictor of response duration in Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL) during imatinib treatment. Leukemia 2003; 17: 1700–1706.

    Article  CAS  Google Scholar 

  45. Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004; 104: 2940–2942.

    Article  CAS  Google Scholar 

  46. Thomas J, Wang L, Clark RE, Pirmohamed M . Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004; 104: 3739–3745.

    Article  CAS  Google Scholar 

  47. Kharas MG, Fruman DA . ABL oncogenes and phosphoinositide 3-kinase: mechanism of activation and downstream effectors. Cancer Res 2005; 65: 2047–2053.

    Article  CAS  Google Scholar 

  48. Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 2005; 105: 1717–1723.

    Article  CAS  Google Scholar 

  49. Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM et al. Anti-leukemic activity of rapamycin in acute myeloid leukemia. Blood 2005; 105: 2527–2534.

    Article  CAS  Google Scholar 

  50. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 2004; 10: 1013–1023.

    Article  CAS  Google Scholar 

  51. Tseng PH, Lin HP, Zhu J, Chen KF, Hade EM, Young DC et al. Synergistic interactions between imatinib and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming imatinib resistance. Blood 2005; 105: 4021–4027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Novartis Pharma GmbH, Nürnberg, Germany for providing everolimus and imatinib. We appreciate the assistance of Drs Wollmer and Wündisch in collecting clinical samples and Mrs Rehn and Mrs Barrett for their excellent technical assistance. This work was supported by the Deutsche José Carreras Leukämie-Stiftung e.V. (to AB), by the PE Kempkes Stiftung (to AB), by the Deutsche Forschungsgemeinschaft, Transregio 17 (to AB and AN), by grants from the German Ministry of Education and Research (BMBF), Kompetenznetz: Akute und chronische Leukämien – 01 GI9980/6, 01G19971 and the German Genome Research Network (NGFN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Burchert.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchert, A., Wang, Y., Cai, D. et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 19, 1774–1782 (2005). https://doi.org/10.1038/sj.leu.2403898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403898

Keywords

This article is cited by

Search

Quick links