Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Signal Transduction

Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3β signaling and leads to an increased transit time through the G1 phase of the cell cycle

Abstract

The inositol 5-phosphatase SHIP (SHIP-1) is a negative regulator of signal transduction in hematopoietic cells and targeted disruption of SHIP in mice leads to a myeloproliferative disorder. We analyzed the effects of SHIP on the human leukemia cell line Jurkat in which expression of endogenous SHIP protein is not detectable. Restoration of SHIP expression in Jurkat cells with an inducible expression system caused a 69% reduction of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and a 65% reduction of Akt kinase activity, which was associated with reduced phosphorylation of glycogen synthase kinase 3β (GSK-3β) (Ser-9) without changing the phosphorylation of Bad (Ser-136), FKHR (Ser-256) or MAPK (Thr-202/Tyr-204). SHIP-expressing Jurkat cells showed an increased transit time through the G1 phase of the cell cycle, but SHIP did not cause a complete cell cycle arrest or apoptosis. Extension of the G1 phase was associated with an increased stability of the cell cycle inhibitor p27Kip1 and reduced phosphorylation of the retinoblastoma protein Rb at serine residue 780. Our data indicate that restoration of SHIP activity in a human leukemia cell line, which has lost expression of endogenous SHIP, downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3β signaling and leads to an increased transit time through the G1 phase of the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cantley LC . The phosphoinositide 3-kinase pathway. The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  CAS  Google Scholar 

  2. Cantley LC, Neel BG . New insights into the tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositides 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1999; 96: 4240–4245.

    Article  CAS  Google Scholar 

  3. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–603.

    Article  CAS  Google Scholar 

  4. Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 1997; 276: 1848–1850.

    Article  CAS  Google Scholar 

  5. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM . Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 1985; 315: 239–242.

    Article  CAS  Google Scholar 

  6. Courtneidge SA, Heber A . An 81 kd protein complexed with middle T antigen and pp60c-src: a possible phosphatidylinositol kinase. Cell 1987; 50: 1031–1037.

    Article  CAS  Google Scholar 

  7. Fukui Y, Saltiel AR, Hanafusa H . Phosphatidylinositol-3 kinase is activated in v-src, v-yes, and v-fps transformed chicken embryo fibroblasts. Oncogene 1991; 6: 407–411.

    CAS  PubMed  Google Scholar 

  8. Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennstöm S et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 1998; 17: 743–753.

    Article  CAS  Google Scholar 

  9. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943–1947.

    Article  CAS  Google Scholar 

  10. Furnari FB, Lin H, Huang HS, Cavenee WK . Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 1997; 94: 12479–12484.

    Article  CAS  Google Scholar 

  11. Chan TO, Rittenhouse SE, Tsichlis PN . AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999; 68: 965–1014.

    Article  CAS  Google Scholar 

  12. Aoki M, Batista O, Bellicosa A, Tsichlis P, Vogt PK . The Akt kinase: molecular determinants of oncogenicity. Proc Natl Acad Sci USA 1998; 95: 14950–14955.

    Article  CAS  Google Scholar 

  13. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6161.

    Article  CAS  Google Scholar 

  14. Jücker M, Südel K, Horn S, Sickel M, Wegner W, Fiedler W et al. Expression of a mutated form of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase in a Hodgkin's lymphoma-derived cell line (CO). Leukemia 2002; 16: 894–901.

    Article  Google Scholar 

  15. Liu L, Damen JE, Ware M, Hughes M, Krystal G . SHIP, a new player in cytokine-induced signalling. Leukemia 1997; 11: 181–184.

    Article  CAS  Google Scholar 

  16. Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM . Structure, function and biology of SHIP proteins. Genes Dev 2000; 14: 505–520.

    CAS  PubMed  Google Scholar 

  17. Geier SJ, Algate PA, Carlberg K, Flowers D, Friedman C, Trask B et al. The human SHIP gene is differentially expressed in cell lineages of the bone marrow and blood. Blood 1997; 89: 1876–1885.

    CAS  PubMed  Google Scholar 

  18. Liu Q, Shalaby F, Jones J, Bouchard D, Dumont DJ . The SH2-containing inositol polyphosphate 5-phosphatase, SHIP, is expressed during hematopoiesis and spermatogenesis. Blood 1998; 91: 2753–2759.

    CAS  PubMed  Google Scholar 

  19. Horn S, Meyer J, Heukeshoven J, Fehse B, Schulze C, Li S et al. The inositol 5-phosphatase SHIP is expressed as 145 and 135 kDa proteins in blood and bone marrow cells in vivo, whereas carboxyltruncated forms of SHIP are generated by proteolytic cleavage in vitro. Leukemia 2001; 15: 112–120.

    Article  CAS  Google Scholar 

  20. Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 1999; 13: 786–791.

    Article  CAS  Google Scholar 

  21. Helgason CD, Damen JE, Rosten P, Grewal R, Sorenson P, Chappel SM et al. Targeted disruption of SHIP leads to hemapoietic perturbations, lung pathology, and a shortened life span. Genes Dev 1998; 12: 1610–1620.

    Article  CAS  Google Scholar 

  22. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19: 7473–7480.

    Article  CAS  Google Scholar 

  23. Jiang X, Stuible M, Chalandon Y, Li A, Chan WY, Eisterer W et al. Evidence for a positive role of SHIP in the BCR-ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 2003; 102: 2976–2984.

    Article  CAS  Google Scholar 

  24. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    Article  CAS  Google Scholar 

  25. Schneider U, Schwenk HU, Bornkamm G . Characterization of EBV-genome negative ‘null’ and ‘T’ cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer 1977; 19: 621–626.

    Article  CAS  Google Scholar 

  26. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol 1989; 140: 323.

    Article  CAS  Google Scholar 

  27. Stocking C, Bergholz U, Friel J, Klingler K, Wagener T, Starke C et al. Distinct classes of factor-independent mutants can be isolated after retroviral mutagenisis of a human myeloid stem cell line. Growth factors 1993; 8: 197–209.

    Article  CAS  Google Scholar 

  28. Jücker M, Abts H, Li W, Schindler R, Merz H, Günther A et al. Expression of Interleukin-6 receptor in Hodgkins's disease. Blood 1991; 77: 2413–2418.

    PubMed  Google Scholar 

  29. Ware MD, Rosten P, Damen JE, Liu L, Humphries RK, Krystal G . Cloning and chracterization of human SHIP, the 145-kD inositol 5-phosphatase that associates with SHC after cytokine stimulation. Blood 1996; 88: 2833–2840.

    CAS  PubMed  Google Scholar 

  30. Endl E, Kausch I, Baack M, Knippers R, Gerdes J, Scholzen T . The expression of Ki-67. MCM3, and p27 defines distinct subsets of proliferaton, resting, and differentiated cells. J Pathol 2001; 195: 457–462.

    Article  CAS  Google Scholar 

  31. Jücker M, Feldman RA . Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase. J Biol Chem 1995; 270: 27817–27822.

    Article  Google Scholar 

  32. Mayr GW . Mass determination of inositol phosphates by high-performance liquid chromatography with postcolumn complexometry (Metal-Dye Detection). In: Irvine RF (ed). Methods in Inositide Research. New York: Raven Press, 1990, pp 83–108.

    Google Scholar 

  33. Bruyns C, Pesesse X, Moreau C, Blero D, Erneux C . The two SH2-domain-containing inositol 5-phosphates SHIP 1 and SHIP2 are coexpressed in human T lymphocytes. Biol Chem 1999; 380: 969–974.

    Article  CAS  Google Scholar 

  34. Cross DA, Aless DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibiton of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  Google Scholar 

  35. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  Google Scholar 

  36. Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 1999; 96: 7421–7426.

    Article  CAS  Google Scholar 

  37. Scholzen T, Gerdes J . The Ki-67 protein: from the known and the unknown. Cell Physiol 2000; 182: 311–322.

    Article  CAS  Google Scholar 

  38. Sherr CJ, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9: 1149–1163.

    Article  CAS  Google Scholar 

  39. Lundberg AS, Weinberg RA . Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998; 18: 753–761.

    Article  CAS  Google Scholar 

  40. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 1996; 15: 7060–7069.

    Article  CAS  Google Scholar 

  41. Gesbert F, Sellers WR, Signoretti S, Loda M, Griffin JD . BCR/ABL regulates expression of the cyclin-dependent kinase inhibitor p27Kip1 through the phosphatidylinositol 3-Kinase/AKT pathway. J Biol Chem 2000; 275: 39223–39230.

    Article  CAS  Google Scholar 

  42. Shirane M, Harumiya Y, Ispida N, Hira A, Miyamoto C, Hatakeyama S et al. Down-regulation of p27(Kip1) by the two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 1999; 274: 13886–13893.

    Article  CAS  Google Scholar 

  43. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR . p150SHIP, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 1996; 10: 1084–1095.

    Article  CAS  Google Scholar 

  44. Ono M, Bolland S, Tempst P, Ravetsch JV . Role of the inositol phosphatase SHIP in a negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature 1996; 383: 263–266.

    Article  CAS  Google Scholar 

  45. Malbec O, Schmitt C, Bruhns P, Krystal G, Fridman WH, Daeron M . Src homology 2 domain-containing inositol 5-phosphatase 1 mediates cell cycle arrest by FcgammaRIIB. J Biol Chem 2001; 276: 30381–30391.

    Article  CAS  Google Scholar 

  46. Liu L, Damen JE, Hughes MR, Babic I, Jirik FR, Krystal G . The Src homology 2 (SH2) domain of SH2-containing inositol phosphatase (SHIP) is essential for tyrosine phosphorylation of SHIP, its association with Shc, and its induction of apoptosis. J Biol Chem 1997; 272: 8983–8988.

    Article  CAS  Google Scholar 

  47. Boer AK, Drayer AL, Vellenga E . Effects of overexpression of the SH2-containing inositol phosphatase SHIP on proliferation and apoptosis of erythroid AS-E2cells. Leukemia 2001; 15: 1750–1757.

    Article  CAS  Google Scholar 

  48. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG . Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-triphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol 2002; 169: 5441–5450.

    Article  CAS  Google Scholar 

  49. Klippel A, Kavanaugh WM, Pot D, Williams LT . A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase Akt through its pleckstrin homology domain. Mol Cell Biol 1997; 17: 338–344.

    Article  CAS  Google Scholar 

  50. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-biphosphate. Science 1997; 275: 665–668.

    Article  CAS  Google Scholar 

  51. Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA . High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 1997; 272: 8474–8481.

    Article  CAS  Google Scholar 

  52. Stephens LR, Jackson TR, Hawkins PT . Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-triphosphate: a new intracellular signallng system? Biochim Biophys Acta 1993; 1179: 27–75.

    Article  CAS  Google Scholar 

  53. Scheid MP, Huber M, Damen JE, Hughes M, Kang V, Neilsen P et al. Phosphatidiylinositol (3,4,5)P3 is essential but not sufficient for proteinkinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473: studies using cells from SH2-containing inositol-5-phosphatase knockout mice. J Biol Chem 2002; 277: 9027–9035.

    Article  CAS  Google Scholar 

  54. Franke TF, Kaplan DR, Cantley LC . PI3K: downstream AKTion blocks apoptosis. Cell 1997; 21: 435–437.

    Article  Google Scholar 

  55. Wang X, Gjörloff-Wingren A, Saxena M, Pathan N, Reed JC, Mustelin T . The tumor suppressor PTEN regulates T cell survival and antigen receptor signalling by acting as a phosphatidylinositol 3-phosphatase. J Immunol 2000; 164: 1934–1939.

    Article  CAS  Google Scholar 

  56. Xu Z, Stokoe D, Kane LP, Weiss A . The inducible expression of the tumor suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in Jurkat T cells. Cell Growth Differ 2002; 13: 285–296.

    CAS  PubMed  Google Scholar 

  57. Seminario MC, Precht P, Wersto RP, Gorospe M, Wange RL . PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression. Oncogene 2003; 22: 8195–8204.

    Article  CAS  Google Scholar 

  58. Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC et al. P21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 2000; 20: 453–461.

    Article  CAS  Google Scholar 

  59. Diehl JA, Cheng M, Roussel MF, Sherr CJ . Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12: 3499–3511.

    Article  CAS  Google Scholar 

  60. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999; 286: 1741–1744.

    Article  CAS  Google Scholar 

  61. Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404: 782–787.

    Article  CAS  Google Scholar 

  62. Vlach J, Hennecke S, Amati B . Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 1997; 16: 5334–5344.

    Article  CAS  Google Scholar 

  63. Fujita N, Sato S, Katayama K, Tsuruo T . Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem 2002; 277: 28706–28713.

    Article  CAS  Google Scholar 

  64. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27 (Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 2002; 8: 1145–1152.

    Article  CAS  Google Scholar 

  65. Carrano AC, Eytan E, Hersko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    Article  CAS  Google Scholar 

  66. Ekholm SV, Reed SI . Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 2000; 12: 676–684.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W Wegner, M Engel and B Serreck for excellent technical assistance and C Stocking for her help in constructing the retroviral vector with a tetracycline response element. We also thank H Halfter for supplying antibodies directed against Kip1, C Müller for anti-cyclin antibodies, A Guse for providing the Jurkat Tet-On cells, G Nolan for the Phoenix-Ampho packaging cell line and D von Laer for providing a plasmid encoding the retroviral gag and pol proteins (pSVgp) and the G protein of the vesicular stomatitis virus (pHCMV-VSV-G). This work was supported by grants from the Deutsche Forschungsgemeinschaft to MJ and GWM (JU255/2-3 and JU255/2-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Jücker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, S., Endl, E., Fehse, B. et al. Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3β signaling and leads to an increased transit time through the G1 phase of the cell cycle. Leukemia 18, 1839–1849 (2004). https://doi.org/10.1038/sj.leu.2403529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403529

Keywords

This article is cited by

Search

Quick links