Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice

Abstract

Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Co-mutation of Srsf2P95H delays Jak2V617F-induced myelofibrosis.
Fig. 2: Srsf2P95H co-mutation reduces Jak2V617F cell competitiveness.
Fig. 3: Impact of Srsf2P95H on Jak2V617F-induced megakaryocyte phenotypic modifications.
Fig. 4: Srsf2P95H co-mutation with Jak2V617F down-regulates genes involved in signaling pathways.
Fig. 5: Srsf2P95H promotes Jak2 exon 14 skipping.
Fig. 6: Srsf2P95H delays romiplositim-induced myelofibrosis.

Similar content being viewed by others

Data availability

Data are available in BioStudies under accession number: E-MTAB-11960.

References

  1. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    Article  CAS  PubMed  Google Scholar 

  2. Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol. 2020;191:152–70.

    Article  CAS  PubMed  Google Scholar 

  3. Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 2017;19:677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, et al. Gli1+ Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell. 2018;23:308–9.

    Article  CAS  PubMed  Google Scholar 

  5. Leimkühler NB, Gleitz HFE, Ronghui L, Snoeren IAM, Fuchs SNR, Nagai JS, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021;28:637–52.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martyré M, Romquin N, Le Bousse-Kerdiles MC, Chevillard S, Benyahia B, Dupriez B, et al. Transforming growth factor-beta and megakaryocytes in the pathogenesis of idiopathic myelofibrosis. Br J Haematol. 1994;88:9–16.

    Article  PubMed  Google Scholar 

  7. Vannucchi AM, Bianchi L, Paoletti F, Pancrazzi A, Torre E, Nishikawa M, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105:3493–501.

    Article  CAS  PubMed  Google Scholar 

  8. Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020;217:e20190103.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N Engl J Med. 2018;379:1416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimizu T, Kubovcakova L, Nienhold R, Zmajkovic J, Meyer SC, Hao-Shen H, et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J Exp Med. 2016;213:1479–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Akada H, Nath D, Hutchison RE, Mohi G. Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood. 2016;127:3410–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:1459–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo Y, Zhou Y, Yamatomo S, Yang H, Zhang P, Chen S, et al. ASXL1 alteration cooperates with JAK2V617F to accelerate myelofibrosis. Leukemia. 2019;33:1287–91.

    Article  PubMed  Google Scholar 

  14. Jacquelin S, Straube J, Cooper L, Vu T, Song A, Bywater M, et al. Jak2V617F and Dnmt3a loss cooperate to induce myelofibrosis through activated enhancer-driven inflammation. Blood. 2018;132:2707–21.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  16. Todisco G, Creignou M, Gallì A, Guglielmelli P, Rumi E, Roncador M, et al. Co-mutation pattern, clonal hierarchy, and clone size concur to determine disease phenotype of SRSF2P95-mutated neoplasms. Leukemia. 2021;35:2371–81.

    Article  CAS  PubMed  Google Scholar 

  17. Lasho T, Jimma T, Finke CM, Patnaik M, Hanson CA, Ketterling RP, et al. SRSF2 mutations in primary myelofibrosis: significant clustering with IDH mutations and independent association with inferior overall and leukemia-free survival. Blood. 2012;120:4168–71.

    Article  CAS  PubMed  Google Scholar 

  18. Guglielmelli P, Pacilli A, Rotunno G, Rumi E, Rosti V, Delaini F, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129:3227–36.

    Article  CAS  PubMed  Google Scholar 

  19. Guglielmelli P, Biamonte F, Rotunno G, Artusi V, Artuso L, Bernardis I, et al. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study. Blood. 2014;123:2157–60.

    Article  CAS  PubMed  Google Scholar 

  20. Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood. 2013;122:1464–77.

    Article  CAS  PubMed  Google Scholar 

  21. Kim E, Ilagan JO, Liang Y, Daubner GM, Lee SC, Ramakrishnan A, et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell. 2015;27:617–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Göthert JR, Gustin SE, Hall MA, Green AR, Göttgens B, Izon DJ, et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood. 2005;105:2724–32.

    Article  PubMed  Google Scholar 

  23. Benlabiod C, Cacemiro MDC, Nédélec A, Edmond V, Muller D, Rameau P, et al. Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN. Nat Commun. 2020;11:4886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Staerk J, Defour JP, Pecquet C, Leroy E, Antoine-Poirel H, Brett I, et al. Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J. 2011;30:4398–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pecquet C, Diaconu CC, Staerk J, Girardot M, Marty C, Royer Y, et al. Thrombopoietin receptor down-modulation by JAK2 V617F: restoration of receptor levels by inhibitors of pathologic JAK2 signaling and of proteasomes. Blood. 2012;119:4625–35.

    Article  CAS  PubMed  Google Scholar 

  26. Daubner GM, Clery A, Jayne S, Stevenin J, Allain FHT. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 2012;31:162–74.

    Article  CAS  PubMed  Google Scholar 

  27. Jayavelu AK, Schnöder TM, Perner F, Herzog C, Meiler A, Krishnamoorthy G, et al. Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature. 2020;588:157–63.

    Article  PubMed  Google Scholar 

  28. Kon A, Yamazaki S, Nannya Y, Kataoka K, Ota Y, Nakagawa MM, et al. Physiological Srsf2 P95H expression causes impaired hematopoietic stem cell functions and aberrant RNA splicing in mice. Blood. 2018;131:621–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smeets MF, Tan SY, Xu JJ, Anande G, Unnikrishnan A, Chalk AM, et al. Srsf2(P95H) initiates myeloid bias and myelodysplastic/ myeloproliferative syndrome from hemopoietic stem cells. Blood. 2018;132:608–21.

    Article  CAS  PubMed  Google Scholar 

  30. Xu JJ, Smeets MF, Tan SY, Wall M, Purton LE, Walkley CR. Modeling human RNA spliceosome mutations in the mouse: not all mice were created equal. Exp Hematol. 2019;70:10–23.

    Article  CAS  PubMed  Google Scholar 

  31. McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015;10:1239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bartels S, Faisal M, Büsche G, Schlue J, Hasemeier B, Schipper E, et al. Mutations associated with age-related clonal hematopoiesis in PMF patients with rapid progression to myelofibrosis. Leukemia. 2020;34:1364–72.

    Article  CAS  PubMed  Google Scholar 

  33. Fabre MA, de Almeida JG, Fiorillo E, Mitchell E, Damaskou A, Rak J, et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022;606:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kramann R, Schneider RK. The identification of fibrosis-driving myofibroblast precursors reveals new therapeutic avenues in myelofibrosis. Blood. 2018;131:2111–9.

    Article  CAS  PubMed  Google Scholar 

  35. Wen QJ, Yang Q, Goldenson B, Malinge S, Lasho T, Schneider RK, et al. Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition. Nat Med. 2015;21:1473–80.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Eliades A, Papadantonakis N, Bhupatiraju A, Burridge KA, Johnston-Cox HA, Migliaccio AR, et al. Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase. J Biol Chem. 2011;286:27630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gangat N, Marinaccio C, Swords R, Watts JM, Gurbuxani S, Rademaker A, et al. Aurora Kinase A Inhibition Provides Clinical Benefit, Normalizes Megakaryocytes, and Reduces Bone Marrow Fibrosis in Patients with Myelofibrosis: A Phase I Trial. Clin Cancer Res. 2019;25:4898–906.

    Article  CAS  PubMed  Google Scholar 

  38. Rao TN, Hansen N, Stetka J, Luque Paz D, Kalmer M, Hilfiker J, et al. JAK2-V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood. 2021;137:2139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets. Mol Cell. 2020;78:477–92.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gilles L, Arslan AD, Marinaccio C, Wen QJ, Arya P, McNulty M, et al. Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis. J Clin Investig. 2017;127:1316–20.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ciurea SO, Merchant D, Mahmud N, Ishii T, Zhao Y, Hu W, et al. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood. 2007;110:986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Masselli E, Carubbi C, Gobbi G, Mirandola P, Galli D, Martini S, et al. Protein kinase Ce inhibition restores megakaryocytic differentiation of hematopoietic progenitors from primary myelofibrosis patients. Leukemia. 2015;29:2192–201.

    Article  CAS  PubMed  Google Scholar 

  43. Zahr AA, Salama ME, Carreau N, Tremblay D, Verstovsek S, Mesa R, et al. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016;101:660–71.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Varricchio L, Iancu-Rubin C, Upadhyaya B, Zingariello M, Martelli F, Verachi P, et al. TGF-β1 protein trap AVID200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight. 2021;6:e145651.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kleppe M, Kwak M, Koppikar P, Riester M, Keller M, Bastian L, et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015;5:316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Woods B, Chen W, Chiu S, Marinaccio C, Fu C, Gu L, et al. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation In Vivo. Clin Cancer Res. 2019;25:5901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–33.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sakr H, Schneider Clark, Murugesan K, Bodo G, His J, Cook ED, et al. pSTAT3/pSTAT5 Signaling Patterns in Molecularly Defined Subsets of Myeloproliferative Neoplasms. Appl Immunohistochem Mol Morphol. 2018;26:147–52.

    Article  CAS  PubMed  Google Scholar 

  49. Kirito K, Osawa M, Morita H, Shimizu R, Yamamoto M, Oda A, et al. A functional role of Stat3 in in vivo megakaryopoiesis. Blood. 2002;99:3220–7.

    Article  CAS  PubMed  Google Scholar 

  50. Grisouard J, Shimizu T, Duek A, Kubovcakova L, Hao-Shen H, Dirnhofer S, et al. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Blood. 2015;125:2131–40.

    Article  CAS  PubMed  Google Scholar 

  51. Yan D, Hutchison RE, Mohi G. Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood. 2012;119:3539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood. 2012;119:3550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Snow JW, Abraham N, Ma MC, Abbey NW, Herndier B, Goldsmith MA. STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells. Blood. 2002;99:95–101.

    Article  CAS  PubMed  Google Scholar 

  54. Lau WW, Hannah R, Green AR, Göttgens B. The JAK-STAT signaling pathway is differentially activated in CALR-positive compared with JAK2V617F-positive ET patients. Blood. 2015;125:1679–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zahn M, Marienfeld R, Melzner I, Heinrich J, Renner B, Wegener S, et al. A novel PTPN1 splice variant upregulates JAK/STAT activity in classical Hodgkin lymphoma cells. Blood. 2017;129:1480–90.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Lieu YK, Ali AM, Penson A, Reggio KS, Rabadan R, et al. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities. Proc Natl Acad Sci USA. 2015;112:E4726–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee SC, North K, Kim E, Jang E, Obeng E, Lu SX, et al. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell. 2018;34:225–41.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshimi A, Lin KT, Wiseman DH, Rahman MA, Pastore A, Wang B, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277:47954–63.

    Article  CAS  PubMed  Google Scholar 

  60. Saharinen P, Vihinen M, Silvennoinen O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol Biol Cell. 2003;14:1448–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma W, Kantarjian H, Zhang X, Wang X, Zhang Z, Yeh CH, et al. JAK2 exon 14 deletion in patients with chronic myeloproliferative neoplasms. PLoS ONE. 2010;5:e12165.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Catarsi P, Rosti V, Morreale G, Poletto V, Villani L, Bertorelli R, et al. JAK2 exon 14 skipping in patients with primary myelofibrosis: a minor splice variant modulated by the JAK2-V617F allele burden. PLoS ONE. 2015;10:e0116636.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood. 2014;124:3956–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kuter DJ, Mufti GJ, Bain BJ, Hasserjian RP, Davis W, Rutstein M. Evaluation of bone marrow reticulin formation in chronic immune thrombocytopenia patients treated with romiplostim. Blood. 2009;114:3748–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the engineers and technicians of Gustave Roussy research facilities, including Laure Touchard, Mirile Ganga, Olivia Bawa, and Hélène Rocheteau, for valuable technical support, Richard Dyunga and Inge Snoeren (Erasmus University Rotterdam) for animal genotyping and nucleic acid extraction, respectively. ES group is supported by grants from the Institut National du Cancer (INCa) and Fondation ARC. The team is labeled by the Ligue Nationale Contre le Cancer (FP). CW received an MD/PhD track grant from the Philantropia Foundation. Funding to SNC is acknowledged from Ludwig Institute for Cancer Research, Fondation contre le cancer, Salus Sanguinis and Fondation “Les avions de Sébastien”, projets Action de recherché concertée (ARC) 16/21-073, Projet de recherche FNRS n°T.0043.21 and WelBio F 44/8/5—MCF/UIG—10955. IP, VW, CM and JLV received support from the MPN Reserch Foundation, INCa, and Ligue Nationale Contre le Cancer. TG and CB received PhD grants from the Ministry of Research and Higher Education and the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Contributions

CW performed and supervised most of the experiments and contributed to the design of the study; TD, CB, NP, CL, PR, CC, VE, NS, AS, VM, ND, CM performed experiments; LL, AA, RH and AP realized bioinformatic analyses; JLV and OAW provided mouse models; SG and FP provided experimental human samples; CW, RS, JLV, OAW, CM, IP, SNC, FP and WV analysed the data; ES designed and supervised the study and wrote the paper. All authors approved the paper.

Corresponding author

Correspondence to Eric Solary.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willekens, C., Laplane, L., Dagher, T. et al. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 37, 1287–1297 (2023). https://doi.org/10.1038/s41375-023-01878-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01878-0

This article is cited by

Search

Quick links