Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cold shock domain protein A represses angiogenesis and lymphangiogenesis via inhibition of serum response element

Abstract

Dual-targeted therapy for antiangiogenesis and antilymphangiogenesis represents a potentially effective strategy for the treatment of various malignancies. Therefore, the goal of the present study was to identify genes that encode inhibitors of both angiogenesis and lymphangiogenesis. Using a cDNA library obtained from Lewis lung carcinoma (LL/2), a candidate gene was identified by the evaluation of growth inhibition in aortic and lymphatic endothelial cells (EC) as that coding for the mouse cold shock domain protein A (mCSDA). Overexpression of mCSDA significantly repressed cell proliferation and c-fos promoter activity in aortic, venous and lymphatic ECs. CSDA is a DNA-binding protein that binds to the hypoxia response element (HRE). Furthermore, of importance, we revealed that CSDA could directly bind to the serum response element (SRE) sequence, resulting in the inhibition of SRE activity, which may lead to growth inhibition in ECs. In an LL/2-inoculated mouse model, tumor growth was significantly repressed in an mCSDA-injected group. Histopathological analysis revealed that expression of blood and lymphatic EC markers was significantly decreased in mCSDA-injected groups. In conclusion, these data suggest that expression of CSDA can repress angiogenesis and lymphangiogenesis via direct binding to SRE in addition to HRE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Akagi K, Ikeda Y, Miyazaki M, Abe T, Kinoshita J, Maehara Y et al. (2000). Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 83: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D . (2003). Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111: 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunone G, Vigneri P, Mariani L, Buto S, Collini P, Pilotti S et al. (1999). Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 155: 1967–1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilov D, Kukk E, Taira S, Jeltsch M, Kaukonen J, Palotie A et al. (1997). Genomic organization of human and mouse genes for vascular endothelial growth factor C. J Biol Chem 272: 25176–25183.

    Article  CAS  PubMed  Google Scholar 

  • Coles LS, Diamond P, Lambrusco L, Hunter J, Burrows J, Vadas MA et al. (2002). A novel mechanism of repression of the vascular endothelial growth factor promoter, by single strand DNA binding cold shock domain (Y-box) proteins in normoxic fibroblasts. Nucleic Acids Res 30: 4845–4854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF . (1996). Cold shock domain proteins repress transcription from the GM-CSF promoter. Nucleic Acids Res 24: 2311–2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond P, Shannon MF, Vadas MA, Coles LS . (2001). Cold shock domain factors activate the granulocyte-macrophage colony-stimulating factor promoter in stimulated Jurkat T cells. J Biol Chem 276: 7943–7951.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J . (2006). Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res 312: 594–607.

    Article  CAS  PubMed  Google Scholar 

  • Gragoudas ES, Adamis AP, Cunningham Jr ET, Feinsod M, Guyer DR . (2004). Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351: 2805–2816.

    Article  CAS  PubMed  Google Scholar 

  • Hill CS, Wynne J, Treisman R . (1994). Serum-regulated transcription by serum response factor (SRF): a novel role for the DNA binding domain. EMBO J 13: 5421–5432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342.

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK . (2002). Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416: 279–280.

    Article  CAS  PubMed  Google Scholar 

  • Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N et al. (2002). Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 6: 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M et al. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61: 1786–1790.

    CAS  PubMed  Google Scholar 

  • Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  • Kobori M, Ikeda Y, Nara H, Kato M, Kumegawa M, Nojima H et al. (1998). Large scale isolation of osteoclast-specific genes by an improved method involving the preparation of a subtracted cDNA library. Genes Cells 3: 459–475.

    Article  CAS  PubMed  Google Scholar 

  • Kudo S, Mattei MG, Fukuda M . (1995). Characterization of the gene for dbpA, a family member of the nucleic-acid-binding proteins containing a cold-shock domain. Eur J Biochem 231: 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Lord BI . (1988). Feedback regulators in normal and tumour tissues. J Cell Sci 10 (Suppl): 231–242.

    Article  CAS  Google Scholar 

  • Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. (2001). Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20: 672–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y et al. (2005). Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol 25: 2542–2547.

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Morishita R, Yamamoto K, Taniyama Y, Aoki M, Matsumoto K et al. (2001). Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension 37: 581–586.

    Article  CAS  PubMed  Google Scholar 

  • Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y, Hirohashi S . (2000). Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res 6: 2431–2439.

    CAS  PubMed  Google Scholar 

  • Nishikawa T, Nakagami H, Matsuki A, Maeda A, Yo CY, Harada T et al. (2006). Development of high-throughput functional screening of therapeutic genes, using a hemagglutinating virus of Japan envelope vector. Hum Gene Ther 17: 470–475.

    Article  CAS  PubMed  Google Scholar 

  • O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285.

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS . (2001). Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7: 462–468.

    CAS  PubMed  Google Scholar 

  • Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K et al. (1998). Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188: 2349–2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikitake Y, Kawashima S, Yamashita T, Ueyama T, Ishido S, Hotta H et al. (2000). Lysophosphatidylcholine inhibits endothelial cell migration and proliferation via inhibition of the extracellular signal-regulated kinase pathway. Arterioscler Thromb Vasc Biol 20: 1006–1012.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H et al. (2006). Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114: 1177–1184.

    Article  CAS  PubMed  Google Scholar 

  • Shannon MF, Coles LS, Attema J, Diamond P . (2001). The role of architectural transcription factors in cytokine gene transcription. J Leukoc Biol 69: 21–32.

    CAS  PubMed  Google Scholar 

  • Shannon MF, Coles LS, Vadas MA, Cockerill PN . (1997). Signals for activation of the GM-CSF promoter and enhancer in T cells. Crit Rev Immunol 17: 301–323.

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H et al. (2004). Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Therapy 11: 1532–1539.

    Article  CAS  PubMed  Google Scholar 

  • Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7: 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Sleeman JP . (2000). The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157: 55–81.

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7: 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Sund M, Hamano Y, Sugimoto H, Sudhakar A, Soubasakos M, Yerramalla U et al. (2005). Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci USA 102: 2934–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K et al. (2001). Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Therapy 8: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K et al. (1999). Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 80: 309–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M et al. (2004). Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 114: 898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonemura Y, Endo Y, Fujita H, Fushida S, Ninomiya I, Bandou E et al. (1999). Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 5: 1823–1829.

    CAS  PubMed  Google Scholar 

  • Yoon YS, Murayama T, Gravereaux E, Tkebuchava T, Silver M, Curry C et al. (2003). VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 111: 717–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou W . (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5: 263–274.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Northern Osaka (Saito) Biomedical Knowledge-Based Cluster Creation Project and the Mitsubishi Pharma Research Foundation. We thank Prof. Hiroshi Nojima of Osaka University for technical assistance and advice in making cDNA library and Dr Gregory J Goodall of the Hanson Centre for Cancer Research, Institute of Medicine and Veterinary Science for providing the hCSDA plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kaneda.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Nakagami, H., Kurooka, M. et al. Cold shock domain protein A represses angiogenesis and lymphangiogenesis via inhibition of serum response element. Oncogene 27, 1821–1833 (2008). https://doi.org/10.1038/sj.onc.1210824

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210824

Keywords

This article is cited by

Search

Quick links