Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1α

Abstract

Angiogenesis and hematopoiesis are closely linked and interactive with each other, but few studies were given to identify possible links between angiogenesis-promoting proteins and hematopoiesis-related transcription factors. Here we investigated the potential relationship of oxygen-sensitive α-subunit of angiogenesis-related hypoxia-inducible factor-1α (HIF-1α) with Runt-related protein 1 (Runx1, also known as acute myeloid leukemia-1, AML-1), an important hematopoietic transcription factor. The results demonstrated that Runx1 and HIF-1α proteins directly interacted with each other to a degree, in which Runt homology domain of Runx1 was mainly involved. Leukemia-related abnormal Runx1 fusion protein AML1-ETO, which fuses the N-terminal 177 amino acid residues of the Runx1 protein in frame to ETO (eight-twenty-one) protein, also interacted with HIF-1α protein with greater ability than Runx1 itself. More intriguingly, Runx1 overexpression inhibited DNA-binding and transcriptional activity of HIF-1 protein with reduced expression of HIF-1-targeted genes such as vascular endothelial growth factor, while silence of Runx1 expression by specific small interfering RNA significantly increased transcriptional activity of HIF-1 protein, suggesting that Runx1 inhibited transcription-dependent function of HIF-1. Vice versa, HIF-1α increased DNA-binding ability and transcriptional activity of Runx1 protein. All these data would shed new insight to understanding Runx1 and HIF-1α-related hematopoietic cell differentiation and angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aikawa Y, Nguyen LA, Isono K, Takakura N, Tagata Y, Schmitz ML et al. (2006). Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J 25: 3955–3965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberghini A, Recalcati S, Tacchini L, Santambrogio P, Campanella A, Cairo G . (2005). Loss of the von Hippel Lindau tumor suppressor disrupts iron homeostasis in renal carcinoma cells. J Biol Chem 280: 30120–30128.

    Article  CAS  PubMed  Google Scholar 

  • Bernardin-Fried F, Kummalue T, Leijen S, Collector MI, Ravid K, Friedman AD . (2004). AML1/RUNX1 increases during G1 to S cell cycle progression independent of cytokine-dependent phosphorylation and induces cyclin D3 gene expression. J Biol Chem 279: 15678–15687.

    Article  CAS  PubMed  Google Scholar 

  • Chan DA, Sutphin PD, Yen SE, Giaccia AJ . (2005). Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol 25: 6415–6426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevallier N, Corcoran CM, Lennon C, Hyjek E, Chadburn A, Bardwell VJ et al. (2004). ETO protein of t(8;21) AML is a corepressor for Bcl-6 B-cell lymphoma oncoprotein. Blood 103: 1454–1463.

    Article  CAS  PubMed  Google Scholar 

  • Desplat V, Faucher JL, Mahon FX, Dello Sbarba P, Praloran V, Ivanovic Z . (2002). Hypoxia modifies proliferation and differentiation of CD34(+) CML cells. Stem Cells 20: 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Stenoien DL, Qiu J, Mancini MA, Tweardy DJ . (2004). Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 24: 4465–4475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durst KL, Hiebert SW . (2004). Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23: 4220–4224.

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y . (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94: 4273–4278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatyol K, Szalay AA . (2001). The p14ARF tumor suppressor protein facilitates nucleolar sequestration of hypoxia-inducible factor-1alpha (HIF-1alpha) and inhibits HIF-1-mediated transcription. J Biol Chem 276: 28421–28429.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Shing Y . (1992). Angiogenesis. J Biol Chem 267: 10931–10934.

    CAS  PubMed  Google Scholar 

  • Friedman AD . (2002). Runx1, c-Myb, and C/EBPalpha couple differentiation to proliferation or growth arrest during hematopoiesis. J Cell Biochem 86: 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Griffioen AW, Molema G . (2000). Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52: 237–268.

    CAS  PubMed  Google Scholar 

  • Hirota K, Semenza GL . (2006). Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59: 15–26.

    Article  PubMed  Google Scholar 

  • Huang Y, Du KM, Xue ZH, Yan H, Li D, Liu W et al. (2003). Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1alpha. Leukemia 17: 2065–2073.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Xue ZH, Shen WZ, Du KM, Yan H, Yu Y et al. (2005). Desferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor-1 alpha that augments transcriptional activity of CCAAT/enhancer-binding protein-alpha. Leukemia 19: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  • Kilic M, Kasperczyk H, Fulda S, Debatin KM . (2007). Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene 26: 2027–2038.

    Article  CAS  PubMed  Google Scholar 

  • Klampfer L, Zhang J, Zelenetz AO, Uchida H, Nimer SD . (1996). The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 93: 14059–14064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23: 1949–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa M, Hirai H . (2003). Role of AML1/Runx1 in the pathogenesis of hematological malignancies. Cancer Sci 94: 841–846.

    Article  CAS  PubMed  Google Scholar 

  • Li G, Sudlow G, Belmont AS . (1998). Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J Cell Biol 140: 975–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Guo M, Xu YB, Li D, Zhou ZN, Wu YL et al. (2006). Induction of tumor arrest and differentiation with prolonged survival by intermittent hypoxia in a mouse model of acute myeloid leukemia. Blood 107: 698–707.

    Article  CAS  PubMed  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL . (2001). FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ et al. (2005). Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659–669.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • Namba K, Abe M, Saito S, Satake M, Ohmoto T, Watanabe T et al. (2000). ndispensable role of the transcription factor PEBP2/CBF in angiogenic activity of a murine endothelial cell MSS31. Oncogene 19: 106–114.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Khac F, Della Valle V, Lopez RG, Ravet E, Mauchauffe M, Friedman AD et al. (2006). Functional analyses of the TEL-ARNT fusion protein underscores a role for oxygen tension in hematopoietic cellular differentiation. Oncogene 25: 4840–4847.

    Article  CAS  PubMed  Google Scholar 

  • Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD . (1994). PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14: 5558–5568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odaka Y, Mally A, Elliott LT, Meyers S . (2000). Nuclear import and subnuclear localization of the proto-oncoprotein ETO (MTG8). Oncogene 19: 3584–3597.

    Article  CAS  PubMed  Google Scholar 

  • Pugh CW, Ratcliffe PJ . (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG et al. (1996). Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA 93: 11895–11900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song LP, Zhang J, Wu SF, Huang Y, Zhao Q, Cao JP et al. (2007). Hypoxia-inducible factor-1α induces differentiation of myeloid leukemic cells through its transcriptional activity-independent mechanism. Oncogene, in press.

  • Stenoien DL, Nye AC, Mancini MG, Patel K, Dutertre M, O’Malley BW et al. (2001). Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol Cell Biol 21: 4404–4412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suda T, Takakura N, Oike Y . (2000). Hematopoiesis and angiogenesis. Int J Hematol 71: 99–107.

    CAS  PubMed  Google Scholar 

  • Werner MH, Shigesada K, Ito Y . (1999). Runt domains take the lead in hematopoiesis and osteogenesis. Nat Med 5: 1356–1357.

    Article  CAS  PubMed  Google Scholar 

  • Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM et al. (1996). CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 16: 1231–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao KW, Li X, Zhao Q, Huang Y, Li D, Peng ZG et al. (2004). Protein kinase Cdelta mediates retinoic acid and phorbol myristate acetate-induced phospholipid scramblase 1 gene expression: its role in leukemic cell differentiation. Blood 104: 3731–3738.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr SW Hiebert, Dr Y Fujii-Kuriyama and Dr DE Zhang for generously providing plasmids. We are also grateful to Dr AS Belmont (University of Illinois Champagne-Urbana) and Dr M Mancini (Baylor College of Medicine) for kindly providing the A03_1 cell line, sharing reagents and for assistance in developing and interpreting the LacO array experiments. This work was supported by grants from National Key Program (973) for Basic Research of China (NO2002CB512805), National Natural Science Foundation of China (30630034; 30500215) and grants from Science and Technology Commission of Shanghai (05JC14032) and Chinese Academy of Science. Dr GQ Chen is a Chang Jiang Scholar of Ministry of Education of People's Republic of China, and is supported by Shanghai Ling-Jun Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Q Chen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Zhou, M., Huang, Y. et al. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1α. Oncogene 27, 839–847 (2008). https://doi.org/10.1038/sj.onc.1210676

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210676

Keywords

This article is cited by

Search

Quick links