Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage

Abstract

H4(D10S170) gene has been identified upon its frequent rearrangement with RET in papillary thyroid tumours (RET/PTC1). The kinase ataxia telangectasia mutated (ATM) phosphorylates a limited number of downstream protein targets in response to DNA damage. We investigated the potential role of H4(D10S170) in DNA damage signaling pathways. We found that in cells treated with etoposide or ionizing radiation (IR), H4(D10S170) underwent ATM-mediated phosphorylation at Thr 434, stabilizing nuclear H4. In ataxia telangectasia cells (A-T), endogenous H4(D10S170) was localized to cytoplasm and was excluded from the nucleus. Moreover, H4(D10S170) was not phosphorylated in ATM-deficient lymphoblasts after ionizing irradiation. Inhibition of ATM kinase interfered with H4(D10S170) apoptotic activity, and expression of H4 with threonine 434 mutated in Alanine, H4T434A, protected the cells from genotoxic stress-induced apoptosis. Most importantly, after exposure to IR we found that silencing of H4(D10S170) in mammalian cells increased cell survival, as shown by clonogenic assay, allows for DNA synthesis as evaluated by bromodeoxyuridine incorporation and permits cells to progress into mitosis as demonstrated by phosphorylation on Histone H3. Our results suggest that H4(D10S170) is involved in cellular response to DNA damage ATM-mediated, and that the impairment of H4(D10S170) gene function might have a role in thyroid carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Canman CE, Lim DS . (1998). The role of ATM in DNA damage responses and cancer. Oncogene 17: 3301–3308.

    Article  PubMed  Google Scholar 

  • Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE . (2005). Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab 90: 2364–2369.

    Article  CAS  PubMed  Google Scholar 

  • Celetti A, Cerrato A, Merolla F, Vitagliano D, Vecchio G, Grieco M . (2004). H4(D10S170), a gene frequently rearranged with RET in papillary thyroid carcinomas: functional characterization. Oncogene 23: 109–121.

    Article  CAS  PubMed  Google Scholar 

  • DiTullio Jr RA, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J et al. (2002). 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human. Nat Cell Biol cancer 4: 998–1002.

    Article  CAS  Google Scholar 

  • Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA et al. (1987). A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 328: 170–172.

    Article  CAS  PubMed  Google Scholar 

  • Goodhead DT . (1994). Initial events in the cellular effects of ionizing radiations: clustered damage in DNA. Int J Radiat Biol 65: 7–17.

    Article  CAS  PubMed  Google Scholar 

  • Grieco M, Cerrato A, Santoro M, Fusco A, Melillo RM, Vecchio G . (1994). Cloning and characterization of H4 (D10S170), a gene involved in RET rearrangements in vivo. Oncogene 9: 2531–2535.

    CAS  PubMed  Google Scholar 

  • Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I et al. (1990). PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60: 557–563.

    Article  CAS  PubMed  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    Article  CAS  PubMed  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H . (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22: 5834–5847.

    Article  CAS  PubMed  Google Scholar 

  • Jhiang SM . (2000). The RET proto-oncogene in human cancers. Oncogene 19: 5590–5597.

    Article  CAS  PubMed  Google Scholar 

  • Jossart GH, O'Brien B, Cheng JF, Tong Q, Jhiang SM, Duh Q et al. (1996). A novel multicolor hybridization scheme applied to localization of a transcribed sequence (D10S170/H4) and deletion mapping in the thyroid cancer cell line TPC-1. Cytogenet Cell Gene 75: 254–257.

    Article  CAS  Google Scholar 

  • Kastan M, Lim DS . (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Kim ST, Lim DS, Canman CE, Kastan MB . (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274: 37538–37543.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S, Heath C, Parker S, Chase A, Iqbal S, Pocock CF et al. (2000). Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR-ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res 60: 3592–3598.

    CAS  PubMed  Google Scholar 

  • Laemli UK . (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  • Lee JH, Paull TT . (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304: 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Leskov KS, Criswell T, Antonio S, Li J, Yang CR, Kinsella TJ et al. (2001). When X-ray-inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 11: 352–372.

    Article  CAS  PubMed  Google Scholar 

  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH et al. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404: 613–617.

    Article  CAS  PubMed  Google Scholar 

  • Little JB . (2003). Genomic instability and bystander effects: a historical perspective. Oncogene 22: 6978–6987.

    Article  CAS  PubMed  Google Scholar 

  • Motoyama N, Naka K . (2004). DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 14: 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Ciampi R, Salvatore G, Santoro M, Gandhi M, Knauf JA et al. (2004). Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Lett 209: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Nikiforov YE . (2000). Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290: 138–141.

    CAS  PubMed  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB . (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31: 3635–3641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neill T, Dwyer AJ, Ziv Y, Chan DW, Lees-Miller SP, Abraham RH et al. (2000). Utilization of oriented peptide libraries to identify substrate motifs selected by ATM. J Biol Chem 275: 22719–22727.

    Article  CAS  PubMed  Google Scholar 

  • Penserga ET, Skorski T . (2007). Fusion tyrosine kinases: a result and cause of genomic instability. Oncogene 26: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I, Grieco M . (1992). Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 89: 1616–1620.

    Article  CAS  PubMed  Google Scholar 

  • Puxeddu E, Zhao G, Stringer JR, Medvedovic M, Moretti S, Fagin JA . (2005). Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens. Mutat Res 570: 17–32.

    Article  CAS  PubMed  Google Scholar 

  • Radivoyevitch T, Sachs RK, Nikiforov YE, Nikiforova MN, Little MP . (2001). On target cell numbers in radiation-induced H4-RET mediated papillary thyroid cancer. Radiat Environ Biophys 40: 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM et al. (1995). On target cell numbers in radiation-induced H4-RET mediated papillary thyroid cancer. Radiat Res 141: 259–277.

    Article  CAS  PubMed  Google Scholar 

  • Schwaller J, Anastasiadou E, Cain D, Kutok J, Wojiski S, Williams IR et al. (2001). H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood 97: 3910–3918.

    Article  CAS  PubMed  Google Scholar 

  • Sheils OM, O'Leary JJ, Sweeney EC . (2000). Assessment of ret/PTC-1 rearrangements in neoplastic thyroid tissue using TaqMan RT–PCR. J Pathol 192: 32–36.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM: ready, set, go. Cell Cycle 2: 116–117.

    Article  CAS  PubMed  Google Scholar 

  • Smith LE, Nagar S, Kim GJ, Morgan WF . (2003). Radiation-induced genomic instability: radiation quality and dose response. Health Phys 85: 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Tong Q, Xing S, Jhiang SM . (1997). Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem 272: 9043–9047.

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J . (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350–4354.

    Article  CAS  PubMed  Google Scholar 

  • Ward JF . (1995). Radiation mutagenesis: the initial DNA lesions responsible. Radiat Res 142: 362–368.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Massimo Santoro for helpful discussion and encouragements. We are indebted to Tommaso Russo for critical remarks and suggestions. This study was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Celetti.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merolla, F., Pentimalli, F., Pacelli, R. et al. Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene 26, 6167–6175 (2007). https://doi.org/10.1038/sj.onc.1210446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210446

Keywords

Search

Quick links