Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM24 is critical for the cellular response to DNA double-strand breaks through regulating the recruitment of MRN complex

Abstract

The MRE11-RAD50-NBS1 (MRN) complex plays a crucial role in DNA double-strand breaks (DSBs) sensing and initiation of signaling cascades. However, the precise mechanisms by which the recruitment of MRN complex is regulated has yet to be elucidated. Here, we identified TRIpartite motif-containing protein 24 (TRIM24), a protein considered as an oncogene overexpressed in cancers, as a novel signaling molecule in response to DSBs. TRIM24 is essential for DSBs-induced recruitment of MRN complex and activation of downstream signaling. In the absence of TRIM24, MRN mediated DSBs repair is remarkably diminished. Mechanistically, TRIM24 is phosphorylated by ataxia-telangiectasia mutated (ATM) and then recruited to DSBs sites, facilitating the accumulation of the MRN components to chromatin. Depletion of TRIM24 sensitizes human hepatocellular carcinoma cells to cancer therapy agent-induced apoptosis and retards the tumor growth in a subcutaneous xenograft tumor mouse model. Together, our data reveal a novel function of TRIM24 in response to DSBs through regulating the MRN complex, which suggests that TRIM24 may be a potential therapeutic molecular target for tumor treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRIM24 is involved in DSBs repair.
Fig. 2: TRIM24 knockdown dampens the activation of repair signaling initiated by DSBs.
Fig. 3: TRIM24 interacts with MRE11 directly.
Fig. 4: TRIM24 is recruited to damaged DNA and subsequently regulates recruitments of MRN complex.
Fig. 5: Recruitment of TRIM24 to DNA damage sites depends on ATM.
Fig. 6: ATM-dependent phosphorylation of TRIM24 at S768 and S808 is critical for DSBs-induced DDR.
Fig. 7: TRIM24 is important for the resistance of hepatocellular carcinoma cells to DSBs.
Fig. 8: Deletion of TRIM24 sensitizes HCC cells to DSBs-induced apoptosis in xenograft mouse model.

Similar content being viewed by others

Data availability

Netphos 3.1 is an online database for the prediction of kinases (https://services.healthtech.dtu.dk/service.php?NetPhos-3.1). RNA-seq data and corresponding clinical information of HCC were extracted from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/).

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene. 2013;32:3789–97.

    Article  CAS  PubMed  Google Scholar 

  3. Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6:254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Waterman DP, Haber JE, Smolka MB. Checkpoint responses to DNA double-strand breaks. Annu Rev Biochem. 2020;89:103–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trenner A, Sartori AA. Harnessing DNA double-strand break repair for cancer treatment. Front Oncol. 2019;9:1388.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20–37.

    Article  CAS  PubMed  Google Scholar 

  7. Lavin MF, Kozlov S, Gatei M, Kijas AW. ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules. 2015;5:2877–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou L, Zheng L, Hu K, Wang X, Zhang R, Zou Y, et al. SUMOylation stabilizes hSSB1 and enhances the recruitment of NBS1 to DNA damage sites. Signal Transduct Target Ther. 2020;5:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee JH, Goodarzi AA, Jeggo PA, Paull TT. 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J. 2010;29:574–85.

    Article  CAS  PubMed  Google Scholar 

  10. Rink L, Slupianek A, Stoklosa T, Nieborowska-Skorska M, Urbanska K, Seferynska I, et al. Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood. 2007;110:651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Zhou J, Lim CU. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res. 2006;16:45–54.

    Article  PubMed  Google Scholar 

  12. Syed A, Tainer JA. The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 2018;87:263–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Q, Goldstein M, Alexander P, Wakeman TP, Sun T, Feng J, et al. Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J. 2014;33:862–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, Losson R, et al. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 1996;15:6701–15.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Palmer WS, Poncet-Montange G, Liu G, Petrocchi A, Reyna N, Subramanian G, et al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J Med Chem. 2016;59:1440–54.

    Article  CAS  PubMed  Google Scholar 

  17. Lv D, Li Y, Zhang W, Alvarez AA, Song L, Tang J, et al. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma. Nat Commun. 2017;8:1454.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chambon M, Orsetti B, Berthe ML, Bascoul-Mollevi C, Rodriguez C, Duong V, et al. Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. Am J Pathol. 2011;178:1461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Huang Y, Yang D, Li X, Liang J, Lin L, et al. Overexpression of TRIM24 is associated with the onset and progress of human hepatocellular carcinoma. PLoS ONE. 2014;9:e85462.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell. 2016;29:846–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bennett J, Fedorov O, Tallant C, Monteiro O, Meier J, Gamble V, et al. Discovery of a chemical tool inhibitor targeting the bromodomains of TRIM24 and BRPF. J Med Chem. 2016;59:1642–7.

    Article  CAS  PubMed  Google Scholar 

  22. Gechijian LN, Buckley DL, Lawlor MA, Reyes JM, Paulk J, Ott CJ, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14:405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jain AK, Allton K, Duncan AD, Barton MC. TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Mol Cell Biol. 2014;34:2695–709.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ackerson SM, Romney C, Schuck PL, Stewart JA. To join or not to join: decision points along the pathway to double-strand break repair vs. chromosome end protection. Front Cell Dev Biol. 2021;9:708763.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Richard DJ, Savage K, Bolderson E, Cubeddu L, So S, Ghita M, et al. hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex. Nucleic Acids Res. 2011;39:1692–702.

    Article  CAS  PubMed  Google Scholar 

  26. Sun X, Fu K, Hodgson A, Wier EM, Wen MG, Kamenyeva O, et al. Sam68 is required for DNA damage responses via regulating poly(ADP-ribosyl)ation. PLoS Biol. 2016;14:e1002543.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yuan J, Adamski R, Chen J. Focus on histone variant H2AX: to be or not to be. FEBS Lett. 2010;584:3717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiu S, Huang J. MRN complex is an essential effector of DNA damage repair. J Zhejiang Univ Sci B. 2021;22:31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5:a012716.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kijas AW, Lim YC, Bolderson E, Cerosaletti K, Gatei M, Jakob B, et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through Exonuclease 1. Nucleic Acids Res. 2015;43:8352–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou H, Kawamura K, Yanagihara H, Kobayashi J, Zhang-Akiyama QM. NBS1 is regulated by two kind of mechanisms: ATM-dependent complex formation with MRE11 and RAD50, and cell cycle-dependent degradation of protein. J Radiat Res. 2017;58:487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Traven A, Heierhorst J. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. BioEssays N Rev Mol Cell Dev Biol. 2005;27:397–407.

    CAS  Google Scholar 

  34. Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4:1633–49.

    Article  CAS  PubMed  Google Scholar 

  35. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    Article  CAS  PubMed  Google Scholar 

  36. Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 2010;584:3682–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duursma AM, Driscoll R, Elias JE, Cimprich KA. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell. 2013;50:116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou Y, Paull TT. DNA-dependent protein kinase regulates DNA end resection in concert with Mre11-Rad50-Nbs1 (MRN) and ataxia telangiectasia-mutated (ATM). J Biol Chem. 2013;288:37112–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Limbo O, Yamada Y, Russell P. Mre11-Rad50-dependent activity of ATM/Tel1 at DNA breaks and telomeres in the absence of Nbs1. Mol Biol Cell. 2018;29:1389–99.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012;149:214–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shorstova T, Foulkes WD, Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer. 2021;124:1478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schafer JM, Lehmann BD, Gonzalez-Ericsson PI, Marshall CB, Beeler JS, Redman LN, et al. Targeting MYCN-expressing triple-negative breast cancer with BET and MEK inhibitors. Sci Transl Med. 2020;12:eaaw8275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mustafi S, Camarena V, Qureshi R, Yoon H, Volmar CH, Huff TC, et al. Vitamin C supplementation expands the therapeutic window of BETi for triple negative breast cancer. EBioMedicine. 2019;43:201–10.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, et al. The therapeutic potential of DNA damage repair pathways and genomic stability in lung cancer. Front Oncol. 2020;10:1256.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rafiei S, Fitzpatrick K, Liu D, Cai MY, Elmarakeby HA, Park J, et al. ATM loss confers greater sensitivity to ATR inhibition than PARP inhibition in prostate cancer. Cancer Res. 2020;80:2094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jegadesan NK, Branzei D. DDX11 loss causes replication stress and pharmacologically exploitable DNA repair defects. Proc Natl Acad Sci USA. 2021;118:e2024258118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fu K, Sun X, Wier EM, Hodgson A, Liu Y, Sears CL, et al. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-kappaB activation. eLife. 2016;5:e15018.

    Article  PubMed  PubMed Central  Google Scholar 

  49. da Silva GN, de Camargo EA, Sávio AL, Salvadori DM. MRE11A and SKP2 genes are associated with the increased cytotoxicity induced by the synergistic effects of cisplatin and gemcitabine in bladder cancer cells. Mol Biol Rep. 2014;41:4613–21.

    Article  PubMed  Google Scholar 

  50. Araki K, Yamashita T, Reddy N, Wang H, Abuzeid WM, Khan K, et al. Molecular disruption of NBS1 with targeted gene delivery enhances chemosensitisation in head and neck cancer. Br J Cancer. 2010;103:1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee KC, Padget K, Curtis H, Cowell IG, Moiani D, Sondka Z, et al. MRE11 facilitates the removal of human topoisomerase II complexes from genomic DNA. Biol Open. 2012;1:863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoa NN, Shimizu T, Zhou ZW, Wang ZQ, Deshpande RA, Paull TT, et al. Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Mol Cell. 2016;64:580–92.

    Article  CAS  PubMed  Google Scholar 

  53. Fu K, Sun X, Wier EM, Hodgson A, Hobbs RP, Wan F. Sam68/KHDRBS1-dependent NF-kappaB activation confers radioprotection to the colon epithelium in gamma-irradiated mice. eLife. 2016;5:e21957.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xie J, Wen M, Zhang J, Wang Z, Wang M, Qiu Y, et al. The roles of RNA helicases in DNA damage repair and tumorigenesis reveal precision therapeutic strategies. Cancer Res. 2022;82:872–84.

    Article  CAS  PubMed  Google Scholar 

  55. Gaudreau-Lapierre A, Garneau D, Djerir B, Coulombe F, Morin T, Marechal A. Investigation of protein recruitment to DNA lesions using 405 Nm laser micro-irradiation. J Vis Exp. 2018;133:57410.

    Google Scholar 

  56. Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol. 2006;173:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levone BR, Lombardi S, Barabino SML. Laser microirradiation as a tool to investigate the role of liquid-liquid phase separation in DNA damage repair. STAR Protoc. 2022;3:101146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31:229–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Michelle C. Barton (University of Texas M. D. Anderson Cancer Center) for providing the wild-type and TRIM24 knockout MEF cells; Zhiyong Mao (Tongji University) for providing the HR reporter plasmids; the “Furong Scholar Program” provided by Department of Education of Hunan province; the Cancer Genome Atlas Program for the database.

Funding

This work was supported by National Natural Science Foundation of China [31900561, 32170726 and 32100580] to KF and YW; Hunan Provincial Science and Technology Department [2021JJ20094] to KF; Central South University [2020CX016] to KF. Funding for open access charge: National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

KF, FW and SX performed study concept and design; YW, YY, QW, SL, WJ and DW performed experiments and analyzed the data; YC revised the paper; JX, RT and QZ provided technical and material support. KF, YW and YY write, reviewed and revised the paper; KF provided acquisition, analysis and interpretation of data, and statistical analysis. All authors read and approved the final paper.

Corresponding author

Correspondence to Kai Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study is approved by the Ethics Committee of West China Hospital, Sichuan University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yao, Y., Wei, Q. et al. TRIM24 is critical for the cellular response to DNA double-strand breaks through regulating the recruitment of MRN complex. Oncogene 42, 586–600 (2023). https://doi.org/10.1038/s41388-022-02580-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02580-8

This article is cited by

Search

Quick links