Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Physical and functional cooperation between AP-1 and β-catenin for the regulation of TCF-dependent genes

Abstract

Stabilization of cytoplasmic β-catenin is a hallmark of a variety of cancers. The stabilized β-catenin is able to translocate to the nucleus, where it acts as a transcriptional activator of T-cell factor (TCF)-regulated genes. β-Catenin may cross-talk with many signalling cascades to activate target genes. Whether β-catenin cooperates with AP-1, another transcriptional complex activated during tumorigenesis is not fully clarified. We show that β-catenin co-immunoprecipitates with c-Jun and c-Fos. GST pull-down experiments indicate a physical association of the armadillo repeat domain of β-catenin with the DNA-binding domain of c-Jun and of the C-terminal domain of β-catenin with the N-terminal domain of c-Fos. Promoter studies indicate that overexpression of AP-1 activates the transcription of two β-catenin target genes, cyclin D1 and c-myc, by a mechanism independent of the AP-1 site, and fully dependent on the TCF-binding site. We further demonstrate that AP-1/β-catenin synergism is involved during serum-induced cyclin D1 transcriptional activation. We identify a TCF-binding site on the cyclin D1 promoter which binds in vivo a complex induced by serum, containing β-catenin, TCF4, c-Fos, c-Jun, JunB and JunD. This novel mechanism of interaction between two signalling cascades might contribute to the potentiation of malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Albanese C, D'Amico M, Reutens AT, Fu M, Watanabe G, Lee RJ et al. (1999). Activation of the cyclin D1 gene by the E1A-associated protein p300 through AP-1 inhibits cellular apoptosis. J Biol Chem 274: 34186–34195.

    Article  CAS  Google Scholar 

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A et al. (1995). Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270: 23589–23597.

    Article  CAS  Google Scholar 

  • Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M . (2000). Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 19: 2056–2068.

    Article  CAS  Google Scholar 

  • Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H . (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20: 4935–4943.

    Article  CAS  Google Scholar 

  • Billin AN, Thirlwell H, Ayer DE . (2000). Beta-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Mol Cell Biol 20: 6882–6890.

    Article  CAS  Google Scholar 

  • Brown JR, Nigh E, Lee RJ, Ye H, Thompson MA, Saudou F et al. (1998). Fos family members induce cell cycle entry by activating cyclin D1. Mol Cell Biol 18: 5609–5619.

    Article  CAS  Google Scholar 

  • Carruba G, Cervello M, Miceli MD, Farruggio R, Notarbartolo M, Virruso L et al. (1999). Truncated form of beta-catenin and reduced expression of wild-type catenins feature HepG2 human liver cancer cells. Ann N Y Acad Sci 886: 212–216.

    Article  CAS  Google Scholar 

  • Chakladar A, Dubeykovskiy A, Wojtukiewicz LJ, Pratap J, Lei S, Wang TC . (2005). Synergistic activation of the murine gastrin promoter by oncogenic Ras and beta-catenin involves SMAD recruitment. Biochem Biophys Res Commun 336: 190–196.

    Article  CAS  Google Scholar 

  • Clevers H, van de Wetering M . (1997). TCF/LEF factor earn their wings. Trends Genet 13: 485–489.

    Article  CAS  Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.

    Article  CAS  Google Scholar 

  • Eger A, Stockinger A, Park J, Langkopf E, Mikula M, Gotzmann J et al. (2004). Beta-catenin and TGFbeta signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23: 2672–2680.

    Article  CAS  Google Scholar 

  • Eger A, Stockinger A, Schaffhauser B, Beug H, Foisner R . (2000). Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of beta-catenin and upregulation of beta-catenin/lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol 148: 173–188.

    Article  CAS  Google Scholar 

  • Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC . (2005). Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308: 1181–1184.

    Article  CAS  Google Scholar 

  • Esufali S, Bapat B . (2004). Cross-talk between Rac1 GTPase and dysregulated Wnt signaling pathway leads to cellular redistribution of beta-catenin and TCF/LEF-mediated transcriptional activation. Oncogene 23: 8260–8271.

    Article  CAS  Google Scholar 

  • Ferrara P, Andermarcher E, Bossis G, Acquaviva C, Brockly F, Jariel-Encontre I et al. (2003). The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression. Oncogene 22: 1461–1474.

    Article  CAS  Google Scholar 

  • Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A et al. (2002). Yes-associated protein (Y AP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 21: 4879–4884.

    Article  CAS  Google Scholar 

  • Fialka I, Schwarz H, Reichmann E, Oft M, Busslinger M, Beug H . (1996). The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol 132: 1115–1132.

    Article  CAS  Google Scholar 

  • Giese K, Grosschedl R . (1993). LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J 12: 4667–4676.

    Article  CAS  Google Scholar 

  • Grueneberg DA, Pablo L, Hu KQ, August P, Weng Z, Papkoff J . (2003). A functional screen in human cells identifies UBF2 as an RNA polymerase II transcription factor that enhances the beta-catenin signaling pathway. Mol Cell Biol 23: 3936–3950.

    Article  CAS  Google Scholar 

  • Gumbiner BM . (1995). Signal transduction of beta-catenin. Curr Opin Cell Biol 7: 634–640.

    Article  CAS  Google Scholar 

  • Harris TJ, Peifer M . (2005). Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol 15: 234–237.

    Article  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  Google Scholar 

  • Hecht A, Litterst CM, Huber O, Kemler R . (1999). Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 274: 18017–18025.

    Article  CAS  Google Scholar 

  • Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R . (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19: 1839–1850.

    Article  CAS  Google Scholar 

  • Iavarone C, Catania A, Marinissen MJ, Visconti R, Acunzo M, Tarantino C et al. (2003). The platelet-derived growth factor controls c-myc expression through a JNK- and AP-1-dependent signaling pathway. J Biol Chem 278: 50024–50030.

    Article  CAS  Google Scholar 

  • Ishikawa T, Sekine N, Hata K, Igarashi T, Fujita T . (2000). Prostaglandin A1 enhances c-fos expression and activating protein-1 activity. Mol Cell Endocrinol 164: 77–85.

    Article  CAS  Google Scholar 

  • Iwahashi H, Takeshita A, Hanazawa S . (2000). Prostaglandin E2 stimulates AP-1-mediated CD14 expression in mouse macrophages via cyclic AMP-dependent protein kinase A. J Immunol 164: 5403–5408.

    Article  CAS  Google Scholar 

  • Kane LP, Shapiro VS, Stokoe D, Weiss A . (1999). Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 9: 601–604.

    Article  CAS  Google Scholar 

  • Kardassis D, Papakosta P, Pardali K, Moustakas A . (1999). c-Jun transactivates the promoter of the human p21(WAF1/Cip1) gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J Biol Chem 274: 29572–29581.

    Article  CAS  Google Scholar 

  • Martin B, Schneider R, Janetzky S, Waibler Z, Pandur P, Kuhl M et al. (2002). The LIM-only protein FHL2 interacts with beta-catenin and promotes differentiation of mouse myoblasts. J Cell Biol 159: 113–122.

    Article  CAS  Google Scholar 

  • Mauviel A, Chung KY, Agarwal A, Tamai K, Uitto J . (1996). Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-beta in fibroblasts and keratinocytes. J Biol Chem 271: 10917–10923.

    Article  CAS  Google Scholar 

  • Mechta F, Lallemand D, Pfarr CM, Yaniv M . (1997). Transformation by ras modifies AP1 composition and activity. Oncogene 14: 837–847.

    Article  CAS  Google Scholar 

  • Miyagishi M, Fujii R, Hatta M, Yoshida E, Araya N, Nagafuchi A et al. (2000). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. J Biol Chem 275: 35170–35175.

    Article  CAS  Google Scholar 

  • Moon RT, Bowerman B, Boutros M, Perrimon N . (2002). The promise and perils of Wnt signaling through beta-catenin. Science 296: 1644–1646.

    Article  CAS  Google Scholar 

  • Morlon A, Sassone-Corsi P . (2003). The LIM-only protein FHL2 is a serum-inducible transcriptional coactivator of AP-1. Proc Natl Acad Sci USA 100: 3977–3982.

    Article  CAS  Google Scholar 

  • Nateri AS, Spencer-Dene B, Behrens A . (2005). Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437: 281–285.

    Article  CAS  Google Scholar 

  • Peron P, Rahmani M, Zagar Y, Durand-Schneider AM, Lardeux B, Bernuau D . (2001). Potentiation of Smad transactivation by Jun proteins during a combined treatment with epidermal growth factor and transforming growth factor-beta in rat hepatocytes. role of phosphatidylinositol 3-kinase-induced AP-1 activation. J Biol Chem 276: 10524–10531.

    Article  CAS  Google Scholar 

  • Rahmani M, Peron P, Weitzman J, Bakiri L, Lardeux B, Bernuau D . (2001). Functional cooperation between JunD and NF-kappaB in rat hepatocytes. Oncogene 20: 5132–5142.

    Article  CAS  Google Scholar 

  • Rivat C, Le Floch N, Sabbah M, Teyrol I, Redeuilh G, Bruyneel E et al. (2003). Synergistic cooperation between the AP-1 and LEF-1 transcription factors in activation of the matrilysin promoter by the src oncogene: implications in cellular invasion. FASEB J 17: 1721–1723.

    Article  CAS  Google Scholar 

  • Sadowski HB, Gilman MZ . (1993). Cell-free activation of a DNA-binding protein by epidermal growth factor. Nature 362: 79–83.

    Article  CAS  Google Scholar 

  • Sasaki T, Suzuki H, Yagi K, Furuhashi M, Yao R, Susa S et al. (2003). Lymphoid enhancer factor 1 makes cells resistant to transforming growth factor beta-induced repression of c-myc. Cancer Res 63: 801–806.

    CAS  PubMed  Google Scholar 

  • Shao J, Jung C, Liu C, Sheng H . (2005). Prostaglandin E2 stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J Biol Chem 280: 26565–26572.

    Article  CAS  Google Scholar 

  • Simonson MS, Herman WH, Dunn MJ . (1994). PGE2 induces c-fos expression by a cAMP-independent mechanism in glomerular mesangial cells. Exp Cell Res 215: 137–144.

    Article  CAS  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B, Kinzler KW . (1998). Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58: 1130–1134.

    CAS  Google Scholar 

  • Stein B, Baldwin Jr AS, Ballard DW, Greene WC, Angel P, Herrlich P . (1993). Cross-coupling of the NF-kappa B p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J 12: 3879–3891.

    Article  CAS  Google Scholar 

  • Sun Y, Kolligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ . (2000). Regulation of beta -catenin transformation by the p300 transcriptional coactivator. Proc Natl Acad Sci USA 97: 12613–12618.

    Article  CAS  Google Scholar 

  • Takemaru KI, Moon RT . (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol 149: 249–254.

    Article  CAS  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  Google Scholar 

  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al. (1997). Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88: 789–799.

    Article  CAS  Google Scholar 

  • Verrecchia F, Tacheau C, Schorpp-Kistner M, Angel P, Mauviel A . (2001). Induction of the AP-1 members c-Jun and JunB by TGF-beta/Smad suppresses early Smad-driven gene activation. Oncogene 20: 2205–2211.

    Article  CAS  Google Scholar 

  • Wei Y, Renard CA, Labalette C, Wu Y, Levy L, Neuveut C et al. (2003). Identification of the LIM protein FHL2 as a coactivator of beta-catenin. J Biol Chem 278: 5188–5194.

    Article  CAS  Google Scholar 

  • Zhurinsky J, Shtutman M, Ben-Ze'ev A . (2000). Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18): 3127–3139.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Franck Verecchia and Jean-Luc Poyet (INSERM U697) for helpful discussions, Cécile Pouzet (IFR02, Paris, France) and Niclas Setterblad (IFR105, Paris, France) for assistance and access to the confocal microscope, Jocelyne André for help in PCR assays, and Agnès Legrand for expert technical assistance. KT was supported by a doctoral fellowship from the Agence Nationale pour la Recherche contre le SIDA (ANRS), MCG by a doctoral fellowship from the Ministry of Research and Technologies (MRT) and JLM by a post-doctoral fellowship from INSERM. This work was supported by INSERM and by a grant from ANRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bernuau.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toualbi, K., Güller, M., Mauriz, JL. et al. Physical and functional cooperation between AP-1 and β-catenin for the regulation of TCF-dependent genes. Oncogene 26, 3492–3502 (2007). https://doi.org/10.1038/sj.onc.1210133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210133

Keywords

This article is cited by

Search

Quick links