Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PML4 induces differentiation by Myc destabilization

Abstract

Opposing functions like oncogene and tumor suppressions have been established for c-Myc and promyelocytic leukemia (PML) protein, respectively. Myc is known to inhibit differentiation of hematopoietic precursor cells, and here we report that PML promotes cell differentiation. We further demonstrate that PML and Myc form a complex in vivo. The interaction of the two proteins leads to the destabilization of Myc in a manner dependent on the really interesting new gene (RING) domain of PML. Although several PML isoforms are able to interact with Myc, the ability to destabilize Myc is specific for PML4. Importantly, the PML-induced destabilization resulted in a reduction of promoter-bound Myc on Myc-repressed genes. Thereby, PML induced the re-activation of Myc-repressed target genes including the tumor suppressive genes of the cell cycle inhibitors cdkn1a/p21 and cdkn2b/p15. Together, these results establish PML-mediated destabilization of Myc and the derepression of cell cycle inhibitor genes as an important regulatory mechanism that allows cell differentiation and prevents aberrant proliferation driven by uncontrolled Myc activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

aa:

amino acids

RARα:

retinoic acid receptor alpha

HA:

hemagglutinin

PML:

promyelocytic leukemia protein

TGFβ:

transforming growth factor beta

References

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  Google Scholar 

  • Amati B . (2004). Myc degradation: dancing with ubiquitin ligases. Proc Natl Acad Sci USA 101: 8843–8844.

    Article  CAS  Google Scholar 

  • Borden KL, Boddy MN, Lally J, O'Reilly NJ, Martin S, Howe K et al. (1995). The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14: 1532–1541.

    Article  CAS  Google Scholar 

  • Buschbeck M, Hofbauer S, Croce LD, Keri G, Ullrich A . (2005). Abl-kinase-sensitive levels of ERK5 and its intrinsic basal activity contribute to leukaemia cell survival. EMBO Rep 6: 63–69.

    Article  CAS  Google Scholar 

  • Cairo S, De Falco F, Pizzo M, Salomoni P, Pandolfi PP, Meroni G . (2005). PML interacts with Myc and Myc target gene expression is altered in PML-null fibroblasts. Oncogene 24: 2195–2203.

    Article  CAS  Google Scholar 

  • Di Croce L . (2005). Chromatin modifying activity of leukaemia associated fusion proteins. Hum Mol Genet 14 (Spec No. 1): R77–R84.

    Article  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295: 1079–1082.

    Article  CAS  Google Scholar 

  • Eisenman RN . (2001). Deconstructing myc. Genes Dev 15: 2023–2030.

    Article  CAS  Google Scholar 

  • Fagioli M, Alcalay M, Tomassoni L, Ferrucci PF, Mencarelli A, Riganelli D et al. (1998). Cooperation between the RING+B1–B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16: 2905–2913.

    Article  CAS  Google Scholar 

  • Frank SR, Schroeder M, Fernandez P, Taubert S, Amati B . (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 15: 2069–2082.

    Article  CAS  Google Scholar 

  • Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML–RAR alpha under control of cathepsin G regulatory sequences. Blood 89: 376–387.

    CAS  PubMed  Google Scholar 

  • He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. (1997). Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 94: 5302–5307.

    Article  CAS  Google Scholar 

  • Herbst A, Salghetti SE, Kim SY, Tansey WP . (2004). Multiple cell-type-specific elements regulate Myc protein stability. Oncogene 23: 3863–3871.

    Article  CAS  Google Scholar 

  • Jensen K, Shiels C, Freemont PS . (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20: 7223–7233.

    Article  CAS  Google Scholar 

  • Kalejta RF, Shenk T . (2003). Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci USA 100: 3263–3268.

    Article  CAS  Google Scholar 

  • Kanatani Y, Kasukabe T, Okabe-Kado J, Yamamoto-Yamaguchi Y, Nagata N, Motoyoshi K et al. (1999). Role of CD14 expression in the differentiation-apoptosis switch in human monocytic leukemia cells treated with 1alpha,25-dihydroxyvitamin D3 or dexamethasone in the presence of transforming growth factor beta1. Cell Growth Differ 10: 705–712.

    CAS  PubMed  Google Scholar 

  • Lafarga M, Berciano MT, Pena E, Mayo I, Castano JG, Bohmann D et al. (2002). Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin and protein substrates of proteasome. Mol Biol Cell 13: 2771–2782.

    Article  CAS  Google Scholar 

  • Melnick A, Licht JD . (1999). Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  • Nilsson JA, Cleveland JL . (2003). Myc pathways provoking cell suicide and cancer. Oncogene 22: 9007–9021.

    Article  CAS  Google Scholar 

  • Rockel TD, Stuhlmann D, von Mikecz A . (2005). Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J Cell Sci 118: 5231–5242.

    Article  CAS  Google Scholar 

  • Salghetti SE, Kim SY, Tansey WP . (1999). Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18: 717–726.

    Article  CAS  Google Scholar 

  • Salomoni P, Pandolfi PP . (2002). The role of PML in tumor suppression. Cell 108: 165–170.

    Article  CAS  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  Google Scholar 

  • Smith KP, Byron M, O'Connell BC, Tam R, Schorl C, Guney I et al. (2004). c-Myc localization within the nucleus: evidence for association with the PML nuclear body. J Cell Biochem 93: 1282–1296.

    Article  CAS  Google Scholar 

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3: 392–399.

    Article  CAS  Google Scholar 

  • Strudwick S, Borden KL . (2002). Finding a role for PML in APL pathogenesis: a critical assessment of potential PML activities. Leukemia 16: 1906–1917.

    Article  CAS  Google Scholar 

  • Treier M, Staszewski LM, Bohmann D . (1994). Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78: 787–798.

    Article  CAS  Google Scholar 

  • Villa R, Morey L, Raker VA, Buschbeck M, Gutierrez A, De Santis F et al. (2006). The methyl-CpG binding protein MBD1 is required for PML–RARalpha function. Proc Natl Acad Sci USA 103: 1400–1405.

    Article  CAS  Google Scholar 

  • Wu S, Cetinkaya C, Munoz-Alonso MJ, von der Lehr N, Bahram F, Beuger V et al. (2003). Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22: 351–360.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank KS Chang, Y Haupt, M Oren, B Amati, F Fuks, W Tansey, S Salghetti, M Edel, D Tenen, M Eilers, D Bowmann, S Jentsch and J Seoane for providing reagents. We gratefully acknowledge Hoffmann-LaRoche (Switzerland) for providing 1α,25-dihydroxyvitamin D3. We thank B Amati, PG Pelicci, T Graf, J Seoane and members of the Di Croce laboratory for helpful discussions. This work was supported by grants from ‘Fundació La Marató TV3’ and the Spanish Consolider (Ministerio de Educacion y Ciencia). MB was supported by Fellowships from the European Molecular Biology Organisation and Deutsche Forschungsgesellschaft; IU by an FPI fellowship and SM by the Deutsche Forschungsgemeinschaft and the German Israeli Foundation for Development and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Di Croce.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschbeck, M., Uribesalgo, I., Ledl, A. et al. PML4 induces differentiation by Myc destabilization. Oncogene 26, 3415–3422 (2007). https://doi.org/10.1038/sj.onc.1210128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210128

Keywords

This article is cited by

Search

Quick links